Suppr超能文献

拟南芥 NADPH 依赖型硫氧还蛋白还原酶及其杂合蛋白的比较分子建模研究。

Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

机构信息

Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongsangnam-do, Republic of Korea.

出版信息

PLoS One. 2012;7(9):e46279. doi: 10.1371/journal.pone.0046279. Epub 2012 Sep 27.

Abstract

2-Cys peroxiredoxins (Prxs) play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC) was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C) of thioredoxin reductase (TrxR) in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx) domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D)), which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD) simulations on AtNTRC and AtNTRA-(Trx-D) proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD) for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D) cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D) because of following reasons: i) unstable and unfavorable interaction of the linker region, ii) shifted Trx domain, and iii) different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

摘要

2- 巯基过氧化物酶(Prx)在保护叶绿体蛋白免受氧化损伤方面发挥着重要作用。拟南芥 NADPH 依赖的硫氧还蛋白还原酶同工型 C(AtNTRC)被鉴定为叶绿体 2-Cys Prx-A 的有效电子供体。拟南芥中有三种硫氧还蛋白还原酶(TrxR)同工型(A、B 和 C)。AtNTRA 仅含有 TrxR 结构域,但 AtNTRC 由 N 端 TrxR 和 C 端硫氧还蛋白(Trx)结构域组成。AtNTRC 具有多种寡聚体结构,Trx 结构域对于伴侣活性很重要。我们之前的实验研究报告称,融合了 AtNTRA 和 AtNTRC 中 Trx 结构域的杂合蛋白(AtNTRA-(Trx-D))形成了多种结构并表现出很强的伴侣活性。但是,根本没有检测到电子转移机制。为了从结构基础上找出这个问题的原因,我们对 AtNTRC 和 AtNTRA-(Trx-D)蛋白进行了两次不同的分子动力学(MD)模拟,使用相同的辅助因子(如 NADPH 和黄素腺嘌呤二核苷酸(FAD))进行了 50 ns。通过将两个结构叠加到接近平均结构的位置,发现了结构上的差异。AtNTRA-(Trx-D)不能将电子从 TrxR 结构域转移到 Trx 结构域的主要原因是由于活性位点中关键催化残基的差异。由于以下原因,在 AtNTRA-(Trx-D)中观察到 TrxR C153 和 Trx C387-C390 之间的二硫键之间的长距离:i)连接区不稳定且不利的相互作用,ii)Trx 结构域的移位,和 iii)Trx 结构域之间不同或较弱的界面相互作用。这项研究是理解杂合蛋白中结构形成与反应活性之间关系的一个很好的例子。此外,这项研究将有助于进一步研究 NADPH 依赖的硫氧还蛋白还原酶蛋白中的电子转移反应机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fb3/3459921/e061b9190a26/pone.0046279.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验