Pérez-Ruiz Juan Manuel, Spínola María Cristina, Kirchsteiger Kerstin, Moreno Javier, Sahrawy Mariam, Cejudo Francisco Javier
Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, 41092 Seville, Spain.
Plant Cell. 2006 Sep;18(9):2356-68. doi: 10.1105/tpc.106.041541. Epub 2006 Aug 4.
One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.
植物为保护叶绿体免受氧化损伤而形成的机制之一涉及一种2-半胱氨酸过氧化物酶,有人提出它可被铁氧还蛋白以及质体硫氧还蛋白Trx x和CDSP32通过FTR/Trx途径还原。我们发现,水稻(Oryza sativa)叶绿体NADPH硫氧还蛋白还原酶(NTRC)带有一个硫氧还蛋白结构域,它利用NADPH来还原叶绿体2-半胱氨酸过氧化物酶BAS1,然后BAS1再还原过氧化氢。NTRC要具有高催化效率,绝对需要在单一多肽中同时存在NTR和类Trx结构域。拟南芥NTRC基因敲除突变体表现出叶肉细胞形状不规则、叶绿体结构异常以及BAS1氧化还原状态失衡,导致在弱光下光合速率受损。在突变转基因系中组成型表达野生型NTRC可挽救此表型。此外,长时间黑暗后再进行光/暗处理会使叶片中的过氧化氢和脂质过氧化增加,并加速NTRC缺陷型植物的衰老。我们提出,NTRC构成了叶绿体保护免受氧化损伤的另一种系统,以NADPH作为还原力来源。由于夜间不产生光驱动的还原型铁氧还蛋白,NTRC-BAS1途径可能是黑暗期间的关键解毒系统,以氧化戊糖磷酸途径产生的NADPH作为还原力来源。