Suppr超能文献

水稻NTRC是一种用于叶绿体抵御氧化损伤的高效氧化还原系统。

Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.

作者信息

Pérez-Ruiz Juan Manuel, Spínola María Cristina, Kirchsteiger Kerstin, Moreno Javier, Sahrawy Mariam, Cejudo Francisco Javier

机构信息

Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, 41092 Seville, Spain.

出版信息

Plant Cell. 2006 Sep;18(9):2356-68. doi: 10.1105/tpc.106.041541. Epub 2006 Aug 4.

Abstract

One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.

摘要

植物为保护叶绿体免受氧化损伤而形成的机制之一涉及一种2-半胱氨酸过氧化物酶,有人提出它可被铁氧还蛋白以及质体硫氧还蛋白Trx x和CDSP32通过FTR/Trx途径还原。我们发现,水稻(Oryza sativa)叶绿体NADPH硫氧还蛋白还原酶(NTRC)带有一个硫氧还蛋白结构域,它利用NADPH来还原叶绿体2-半胱氨酸过氧化物酶BAS1,然后BAS1再还原过氧化氢。NTRC要具有高催化效率,绝对需要在单一多肽中同时存在NTR和类Trx结构域。拟南芥NTRC基因敲除突变体表现出叶肉细胞形状不规则、叶绿体结构异常以及BAS1氧化还原状态失衡,导致在弱光下光合速率受损。在突变转基因系中组成型表达野生型NTRC可挽救此表型。此外,长时间黑暗后再进行光/暗处理会使叶片中的过氧化氢和脂质过氧化增加,并加速NTRC缺陷型植物的衰老。我们提出,NTRC构成了叶绿体保护免受氧化损伤的另一种系统,以NADPH作为还原力来源。由于夜间不产生光驱动的还原型铁氧还蛋白,NTRC-BAS1途径可能是黑暗期间的关键解毒系统,以氧化戊糖磷酸途径产生的NADPH作为还原力来源。

相似文献

引用本文的文献

9
NTRC regulates CP12 to activate Calvin-Benson cycle during cold acclimation.NTRC 通过调控 CP12 激活 Calvin-Benson 循环以适应低温。
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2306338120. doi: 10.1073/pnas.2306338120. Epub 2023 Aug 7.

本文引用的文献

4
The complex architecture of oxygenic photosynthesis.产氧光合作用的复杂架构。
Nat Rev Mol Cell Biol. 2004 Dec;5(12):971-82. doi: 10.1038/nrm1525.
6
Reactive oxygen gene network of plants.植物的活性氧基因网络
Trends Plant Sci. 2004 Oct;9(10):490-8. doi: 10.1016/j.tplants.2004.08.009.
9
Reactive oxygen signalling: the latest news.活性氧信号传导:最新消息
Curr Opin Plant Biol. 2004 Jun;7(3):323-8. doi: 10.1016/j.pbi.2004.03.005.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验