Falaggis Konstantinos, Towers David P, Towers Catherine E
School of Mechanical Engineering, University of Leeds, UK.
Appl Opt. 2012 Sep 20;51(27):6471-9. doi: 10.1364/AO.51.006471.
Multiwavelength interferometry (MWI) is a well established technique in the field of optical metrology. Previously, we have reported a theoretical analysis of the method of excess fractions that describes the mutual dependence of unambiguous measurement range, reliability, and the measurement wavelengths. In this paper wavelength, selection strategies are introduced that are built on the theoretical description and maximize the reliability in the calculated fringe order for a given measurement range, number of wavelengths, and level of phase noise. Practical implementation issues for an MWI interferometer are analyzed theoretically. It is shown that dispersion compensation is best implemented by use of reference measurements around absolute zero in the interferometer. Furthermore, the effects of wavelength uncertainty allow the ultimate performance of an MWI interferometer to be estimated.