Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis, Université Nice Sophia Antipolis, CNRS, Sophia Antipolis 06903 CEDEX, France.
IEEE Trans Biomed Eng. 2013 Jan;60(1):20-7. doi: 10.1109/TBME.2012.2220639. Epub 2012 Sep 24.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia encountered in clinical practice. Radiofrequency catheter ablation (CA) is increasingly employed to treat this disease, yet the selection of persistent AF patients who will benefit from this treatment remains a challenging task. Several parameters of the surface electrocardiogram (ECG) have been analyzed in previous works to predict AF termination by CA, such as fibrillatory wave (f-wave) amplitude. However, they are usually manually computed and only a subset of electrodes is inspected. In this study, a novel perspective of the role of f-wave amplitude as a potential noninvasive predictor of CA outcome is adopted by exploring ECG interlead spatial variability. An automatic procedure for atrial amplitude computation based on cubic Hermite interpolation is first proposed. To describe the global f-wave peak-to-peak amplitude distribution, signal contributions from multiple leads are then combined by condensing the most representative features of the atrial signal in a reduced-rank approximation based on principal component analysis (PCA). We show that exploiting ECG spatial diversity by means of this PCA-based multilead approach does not only increase the robustness to electrode selection, but also substantially improves the predictive power of the amplitude parameter.
心房颤动(AF)是临床实践中最常见的持续性心律失常。越来越多地采用射频导管消融(CA)来治疗这种疾病,但选择将从这种治疗中受益的持续性 AF 患者仍然是一项具有挑战性的任务。以前的研究分析了体表心电图(ECG)的几个参数,以通过 CA 预测 AF 的终止,例如颤动波(f 波)幅度。然而,这些参数通常是手动计算的,并且仅检查了电极的一部分。在这项研究中,通过探索 ECG 导联间的空间变异性,采用了 f 波幅度作为 CA 结果的潜在无创预测因子的新视角。首先提出了一种基于三次 Hermite 插值的自动心房幅度计算程序。为了描述全局 f 波峰峰值幅度分布,然后通过在基于主成分分析(PCA)的降秩逼近中对心房信号的最具代表性特征进行组合,来融合多个导联的信号贡献。我们表明,通过这种基于 PCA 的多导联方法利用 ECG 空间多样性不仅可以提高对电极选择的鲁棒性,而且还可以大大提高幅度参数的预测能力。