Université Côte d'Azur, CNRS, I3S, 2000 Route des Lucioles, CS 40121, 06903 Sophia Antipolis Cedex, France.
Department of Cardiology, Princess Grace Hospital, 1 Avenue Pasteur, 98000 Monaco.
Comput Biol Med. 2017 Sep 1;88:126-131. doi: 10.1016/j.compbiomed.2017.07.004. Epub 2017 Jul 4.
With the increasing prevalence of atrial fibrillation (AF), there is a strong clinical interest in determining whether a patient suffering from persistent AF will benefit from catheter ablation (CA) therapy at long term. This work presents several regression models based on noninvasive measures automatically computed from the standard 12-lead electrocardiogram (ECG) such as AF dominant frequency (DF), spectral concentration and spatiotemporal variability (STV). Sixty-two AF patients referred to CA were enrolled in this study. Forty-seven of them had no recurrence after CA during an average follow-up of 14 ± 8 months. The ECG features were extracted from an ECG recorded before the CA intervention and they were combined by means of logistic regression. The combination of DF and STV values from different precordial leads reached AUC = 0.939, outperforming the best results by using only one kind of features, such as DF (AUC = 0.801), and yielding a global accuracy of 93.5% for discriminating the best long-term responders to CA. These results point out the need to take into consideration the spatial variation of spectral ECG parameters to build predictive models dealing with AF.
随着心房颤动(AF)的患病率不断增加,人们强烈关注确定患有持续性 AF 的患者是否会从导管消融(CA)治疗中长期获益。本研究提出了几种基于从标准 12 导联心电图(ECG)自动计算的无创测量值的回归模型,例如 AF 主导频率(DF)、频谱浓度和时空变异性(STV)。本研究纳入了 62 名因 AF 而接受 CA 的患者。其中 47 名患者在平均 14 ± 8 个月的随访期间没有复发。在 CA 干预之前记录的 ECG 中提取了 ECG 特征,并通过逻辑回归进行了组合。来自不同前导导联的 DF 和 STV 值的组合达到 AUC = 0.939,优于仅使用一种特征(例如 DF,AUC = 0.801)的最佳结果,并为 CA 的最佳长期反应者的区分提供了 93.5%的整体准确性。这些结果表明需要考虑 ECG 参数的空间变化来构建用于处理 AF 的预测模型。