Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA.
J Biol Chem. 2012 Nov 16;287(47):39602-12. doi: 10.1074/jbc.M112.397976. Epub 2012 Oct 2.
S-nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1-1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1(C40A), Panx1(C346A), and Panx1(C426A)). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1(C40A/C346A)) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.
S-亚硝基化是半胱氨酸上的一种翻译后修饰,可以调节蛋白质功能,而连接蛋白 1 (Panx1) 通道存在于富含一氧化氮 (NO) 物质的血管组织中。因此,我们研究了 Panx1 是否可以被 S-亚硝基化,以及这种修饰是否会影响通道活性。
使用生物素开关测定法,我们发现应用 NO 供体 S-亚硝基谷胱甘肽 (GSNO) 或二乙氨基 (Z)-1-[N,N-二乙基氨基]二氮烯-1,2-二醇 (DEA NONOate) 可诱导人胚肾 (HEK) 293T 细胞表达野生型 (WT) Panx1 和小鼠主动脉内皮细胞中的 Panx1 S-亚硝基化。功能上,GSNO 和 DEA NONOate 减弱了 Panx1 电流;与 S-亚硝基化的作用一致,还原剂二硫苏糖醇可逆转电流抑制作用,而鸟苷酸环化酶活性阻断剂 1H-[1,2,4]恶二唑[4,3-a]喹喔啉-1-酮则无影响。此外,用两种 NO 供体处理可显著抑制 ATP 释放。
为了确定哪个半胱氨酸残基被 S-亚硝基化,我们在 Panx1 中进行了单个半胱氨酸到丙氨酸的取代 (Panx1(C40A)、Panx1(C346A)和 Panx1(C426A))。这些单个半胱氨酸的突变并未阻止 Panx1 的 S-亚硝基化;然而,突变 Cys-40 或 Cys-346 可防止 GSNO 抑制 Panx1 电流和 ATP 释放。这一观察结果表明,可能有多个半胱氨酸被 S-亚硝基化以调节 Panx1 通道功能。
事实上,我们发现突变 Cys-40 和 Cys-346 (Panx1(C40A/C346A)) 不仅阻止了 GSNO 对 Panx1 的 S-亚硝基化,还阻止了 GSNO 介导的 Panx1 电流和 ATP 释放的抑制作用。
综上所述,这些结果表明 Panx1 第 40 位和第 346 位半胱氨酸的 S-亚硝基化抑制了 Panx1 通道电流和 ATP 释放。