Suppr超能文献

通过超薄表面涂层提高锂离子电池中纳米级和微米级LiMn₂O₄的高倍率和高温性能。

Enhancing high-rate and elevated-temperature performances of nano-sized and micron-sized LiMn2O4 in lithium-ion batteries with ultrathin surface coatings.

作者信息

Luan Xinning, Guan Dongsheng, Wang Ying

机构信息

Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

J Nanosci Nanotechnol. 2012 Sep;12(9):7113-20. doi: 10.1166/jnn.2012.6577.

Abstract

LiMn2O4 suffers from severe capacity degradation when used as a cathode material in rechargeable lithium-ion batteries, especially when cycled at high rates and elevated temperatures. To enhance its high-rate electrochemical performance at elevated temperature (55 degrees C), we use atomic layer deposition (ALD) to deposit ultrathin and highly conformal Al2O3 coatings (as thin as 0.72 nm) onto micron-sized and nano-sized LiMn2O4 with precise thickness-control at atomic scale. All ALD-modified electrodes exhibit significantly improved capacities and cycling stability compared to bare electrodes. In particular, the effect of ALD coating to improve electrochemical performance of LiMn2O4 is more distinct for nano-sized LiMn2O4 than for micron-sized LiMn2O4, and more distinct for electrochemical cycling at higher charge/discharge rates. For example, nano-LiMn2O4 electrode coated with 6 Al2O3 ALD layers delivers higher initial capacity (124.7 mA h/g) and final capacity (106.7 mA h/g) after 100 cycles than bare electrode with an initial capacity of 112.3 mA h/g and a final capacity of only 95.5 mA h/g, when cycled at a very high rate of 5 C at 55 degrees C. In addition, nano-LiMn2O4 electrodes show much better rate performance than micron-LiMn2O4 electrodes at 5 C. The enhanced electrochemical performance of ALD-modified LiMn2O4 is ascribed to high-quality ALD oxide coatings that are highly conformal, dense, complete, and thus protect active material from severe dissolution, and to a formed robust glass layer on the surface of LiMn2O4 that suppress its crystallographic transformation during electrochemical cycling. Surface modifications of LiMn2O4 are also carried out by either ALD coating directly onto the entire LiMn2O4/carbon/PVDF composite electrode or coating only on LiMn2O4 particles in electrode. The former results in more significantly improved electrochemical performance of cathode, possibly because ALD coating onto entire electrode provides better mechanical integrity and preserves contact between LiMn2O4 particles and carbon/poly-vinylidenefluoride network.

摘要

当用作可充电锂离子电池的阴极材料时,LiMn2O4会出现严重的容量衰减,尤其是在高倍率和高温下循环时。为了提高其在高温(55摄氏度)下的高倍率电化学性能,我们使用原子层沉积(ALD)在微米级和纳米级LiMn2O4上沉积超薄且高度 conformal 的Al2O3涂层(薄至0.72纳米),并在原子尺度上精确控制厚度。与裸电极相比,所有经ALD改性的电极都表现出显著提高的容量和循环稳定性。特别是,ALD涂层对提高LiMn2O4电化学性能的效果,对于纳米级LiMn2O4比微米级LiMn2O4更明显,对于更高充放电倍率下的电化学循环也更明显。例如,涂覆有6层Al2O3 ALD涂层的纳米LiMn2O4电极在100次循环后,初始容量(124.7 mA h/g)和最终容量(106.7 mA h/g)高于裸电极,裸电极的初始容量为112.3 mA h/g,在55摄氏度下以5 C的非常高倍率循环时最终容量仅为95.5 mA h/g。此外,在5 C时,纳米LiMn2O4电极的倍率性能比微米LiMn2O4电极好得多。ALD改性LiMn2O4增强的电化学性能归因于高质量的ALD氧化物涂层,该涂层高度 conformal、致密、完整,从而保护活性材料免受严重溶解,还归因于在LiMn2O4表面形成的坚固玻璃层,该玻璃层抑制其在电化学循环过程中的晶体学转变。LiMn2O4的表面改性也可以通过将ALD涂层直接涂覆在整个LiMn2O4/碳/PVDF复合电极上,或者仅涂覆在电极中的LiMn2O4颗粒上来进行。前者导致阴极的电化学性能有更显著的改善,这可能是因为在整个电极上涂覆ALD涂层提供了更好的机械完整性,并保持了LiMn2O4颗粒与碳/聚偏二氟乙烯网络之间的接触。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验