Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University , Guilin 541004, China.
Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University , Huanggang 438000, China.
ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21656-65. doi: 10.1021/acsami.6b05640. Epub 2016 Aug 10.
A three dimensional (3D) Al2O3 coating layer was synthesized by a facile approach including stripping and in situ self-assembly of γ-AlOOH. The uniform flower-like Al2O3 nanosheets with high specific area largely sequesters acidic species produced by side reaction between electrode and electrolyte. The inner coating layer wrapping spinel LiMn2O4 effectively inhibits the dissolution of Mn by suppressing directive contact with electrolyte to enhance cycling stability. The rate performance is improved because of the better electrolyte storage of the assembled hierarchical architecture of the 3D coating layer affording unimpeded Li(+) diffusion from electrode to electrolyte. The electrochemical results reveal the as-prepared coated LiMn2O4 sample with the amount of Al2O3 at 1 wt % exhibits superior cycle stability under room temperature even at elevated temperature. The initial specific discharge capacity is 128.5 mAh g(-1) at 0.1 C and retains 89.8% of the initial capacity after 800 cycles at 1 C rate. When cycling at 55 °C, the composite shows 93.6% capacity retention after 500 cycles. This facile surface modification and effective structure of coating layer can be adopted to enhance the cycling performance and thermal stability of other electrode materials for which Al2O3 plays its role.
通过一种简便的方法,包括剥离和原位自组装γ-AlOOH,合成了三维(3D)Al2O3 涂层。具有高比表面积的均匀花状 Al2O3 纳米片大量隔离了电极和电解质之间副反应产生的酸性物质。内层涂层包裹尖晶石 LiMn2O4,通过抑制与电解质的直接接触,有效抑制了 Mn 的溶解,从而提高了循环稳定性。由于组装的 3D 涂层的分层结构更好地储存了电解质,有利于 Li(+)从电极到电解质的无阻扩散,因此提高了倍率性能。电化学结果表明,在室温下,即使在高温下,制备的涂覆有 1wt%Al2O3 的 LiMn2O4 样品在 1C 速率下循环 800 次后,初始比容量为 128.5mAh g(-1),保留了初始容量的 89.8%。在 55°C 下循环时,该复合材料在 500 次循环后具有 93.6%的容量保持率。这种简便的表面改性和有效的涂层结构可以用于提高其他电极材料的循环性能和热稳定性,其中 Al2O3 发挥了作用。