Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
Acc Chem Res. 2013 Mar 19;46(3):750-60. doi: 10.1021/ar200335j. Epub 2012 Oct 4.
A diverse array of carbon nanomaterials (NMs), including fullerene, carbon nanotubes (CNTs), graphene, nanodiamonds, and carbon nanoparticles, have been discovered and widely applied in a variety of industries. Carbon NMs have been detected in the environment and have a strong possibility of entering the human body. The safety of carbon NMs has thus become a serious concern in academia and society. To achieve strict biosafety assessments, researchers need to fully understand the effects and fates of NMs in the human body, including information about absorption, distribution, metabolism, excretion, and toxicity (ADME/T). To acquire the ADME data, researchers must quantify NMs, but carbon NMs are very difficult to quantify in vivo. The carbon background in a typical biological system is high, particularly compared with the much lower concentration of carbon NMs. Moreover, carbon NMs lack a specific detection signal. Therefore, isotopic labeling, with its high sensitivity and specificity, is the first choice to quantify carbon NMs in vivo. Previously, researchers have used many isotopes, including ¹³C, ¹⁴C, ¹²⁵I, ¹³¹I, ³H, ⁶⁴Cu, ¹¹¹In, ⁸⁶Y, 99mTc, and ⁶⁷Ga, to label carbon NMs. We used these isotopic labeling methods to study the ADME of carbon NMs via different exposure pathways in animal models. Except for the metabolism of carbon NMs, which has seldom been investigated, significant amounts of data have been reported on the in vivo absorption, distribution, excretion, and toxicity of carbon NMs, which have revealed characteristic behaviors of carbon NMs, such as reticuloendothelial system (RES) capture. However, the complexity of the biological systems and diverse preparation and functionalization of the same carbon NMs have led to inconsistent results across different studies. Therefore, the data obtained so far have not provided a compatible and systematic profile of biosafety. Further efforts are needed to address these problems. In this Account, we review the in vivo quantification methods of carbon NMs, focusing on isotopic labeling and tracing methods, and summarize the related labeling, purification, bio-sampling, and detection of carbon NMs. We also address the advantages, applicable situations, and limits of various labeling and tracing methods and propose guidelines for choosing suitable labeling methods. A collective analysis of the ADME information on various carbon NMs in vivo would provide general principles for understanding the fate of carbon NMs and the effects of chemical functionalization and aggregation of carbon NMs on their ADME/T in vivo and their implications in nanotoxicology and biosafety evaluations.
已发现并广泛应用于各种行业的多种碳纳米材料(NMs),包括富勒烯、碳纳米管(CNTs)、石墨烯、纳米金刚石和碳纳米粒子。碳 NMs 已在环境中检测到,并且极有可能进入人体。因此,碳 NMs 的安全性成为学术界和社会关注的严重问题。为了实现严格的生物安全性评估,研究人员需要充分了解 NMs 在人体中的作用和命运,包括吸收、分布、代谢、排泄和毒性(ADME/T)方面的信息。为了获得 ADME 数据,研究人员必须对 NMs 进行定量,但碳 NMs 在体内非常难以定量。典型生物系统中的碳背景很高,尤其是与碳 NMs 低得多的浓度相比。此外,碳 NMs 缺乏特定的检测信号。因此,具有高灵敏度和特异性的同位素标记是在体内定量碳 NMs 的首选方法。以前,研究人员已经使用了许多同位素,包括 ¹³C、¹⁴C、¹²⁵I、¹³¹I、³H、⁶⁴Cu、¹¹¹In、⁸⁶Y、99mTc 和 ⁶⁷Ga,来标记碳 NMs。我们使用这些同位素标记方法来研究通过动物模型的不同暴露途径的碳 NMs 的 ADME。除了碳 NMs 的代谢很少被研究外,大量关于碳 NMs 在体内吸收、分布、排泄和毒性的数据已经被报道,这些数据揭示了碳 NMs 的特征行为,如网状内皮系统(RES)捕获。然而,由于生物系统的复杂性以及相同碳 NMs 的不同制备和功能化,不同研究之间的结果不一致。因此,迄今为止获得的数据并未提供兼容且系统的生物安全性概况。需要进一步努力来解决这些问题。在本报告中,我们综述了碳 NMs 的体内定量方法,重点介绍了同位素标记和示踪方法,并总结了相关的标记、纯化、生物采样和检测碳 NMs 的方法。我们还讨论了各种标记和示踪方法的优缺点、适用情况和局限性,并提出了选择合适标记方法的指南。对各种碳 NMs 在体内的 ADME 信息进行综合分析,将为理解碳 NMs 的命运以及化学功能化和聚集对碳 NMs 的 ADME/T 在体内的影响提供一般原理,并为纳米毒理学和生物安全性评估提供指导。