Suppr超能文献

液态合金打印技术在微流控可拉伸电子产品中的应用。

Liquid alloy printing of microfluidic stretchable electronics.

机构信息

Department of Engineering Sciences, Uppsala University, Box-534, The Angstrom Laboratory, SE-751 21, Uppsala, Sweden.

出版信息

Lab Chip. 2012 Nov 21;12(22):4657-64. doi: 10.1039/c2lc40628d.

Abstract

Recently, microfluidic stretchable electronics has attracted great interest from academia since conductive liquids allow for larger cross-sections when stretched and hence low resistance at longer lengths. However, as a serial process it has suffered from low throughput, and a parallel processing technology is needed for more complex systems and production at low costs. In this work, we demonstrate such a technology to implement microfluidic electronics by stencil printing of a liquid alloy onto a semi-cured polydimethylsiloxane (PDMS) substrate, assembly of rigid active components, encapsulation by pouring uncured PDMS on-top and subsequent curing. The printing showed resolution of 200 μm and linear resistance increase of the liquid conductors when elongated up to 60%. No significant change of resistance was shown for a circuit with one LED after 1000 times of cycling between a 0% and an elongation of 60% every 2 s. A radio frequency identity (RFID) tag was demonstrated using the developed technology, showing that good performance could be maintained well into the radio frequency (RF) range.

摘要

最近,由于在拉伸时导电液体允许更大的横截面,从而在更长的长度上具有更低的电阻,因此微流控可拉伸电子产品引起了学术界的极大兴趣。然而,作为一个串联过程,它的吞吐量较低,需要一种并行处理技术来处理更复杂的系统和低成本生产。在这项工作中,我们通过将液态合金模板印刷到半固化的聚二甲基硅氧烷(PDMS)基底上、组装刚性有源组件、在顶部浇注未固化的 PDMS 并进行后续固化,展示了这种实现微流控电子的技术。该印刷技术的分辨率为 200μm,当液体导体伸长至 60%时,线性电阻增加。一个带有一个 LED 的电路在 0%和 60%伸长率之间每 2 秒循环 1000 次后,其电阻没有明显变化。使用所开发的技术展示了一个射频识别(RFID)标签,表明良好的性能可以很好地保持在射频(RF)范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验