Suppr超能文献

在以氢气为供氢体的生物膜中,硝酸盐还原菌和硫酸盐还原菌的相互作用。

Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm.

机构信息

Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 1001 South McAllister Ave. Tempe, AZ, USA.

出版信息

Environ Sci Technol. 2012 Oct 16;46(20):11289-98. doi: 10.1021/es302370t. Epub 2012 Oct 5.

Abstract

To explore the relationships between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) in H(2)-fed biofilms, we used two H(2)-based membrane biofilm reactors (MBfRs) with or without restrictions on H(2) availability. DB and SRB compete for H(2) and space in the biofilm, and sulfate (SO(4)(2-)) reduction should be out-competed when H(2) is limiting inside the biofilm. With H(2) availability restricted, nitrate (NO(3)(-)) reduction was proportional to the H(2) pressure and was complete at a H(2) pressure of 3 atm; SO(4)(2-) reduction began at H(2) ≥ 3.4 atm. Without restriction on H(2) availability, NO(3)(-) was the preferred electron acceptor, and SO(4)(2-) was reduced only when the NO(3)(-) surface loading was ≤ 0.13 g N/m(2)-day. We assayed DB and SRB by quantitative polymerase chain reaction targeting the nitrite reductases and dissimilatory sulfite reductase, respectively. Whereas DB and SRB increased with higher H(2) pressures when H(2) availability was limiting, SRB did not decline with higher NO(3)(-) removal flux when H(2) availability was not limiting, even when SO(4)(2-) reduction was absent. The SRB trend reflects that the SRB's metabolic diversity allowed them to remain in the biofilm whether or not they were reducing SO(4)(2-). In all scenarios tested, the SRB were able to initiate strong SO(4)(2-) reduction only when competition for H(2) inside the biofilm was relieved by nearly complete removal of NO(3)(-).

摘要

为了探索 H(2)供能生物膜中反硝化菌(DB)和硫酸盐还原菌(SRB)之间的关系,我们使用了两个基于 H(2)的膜生物膜反应器(MBfRs),一个限制 H(2)的可用性,另一个不限制 H(2)的可用性。DB 和 SRB 争夺生物膜中的 H(2)和空间,当生物膜内 H(2)有限时,硫酸盐(SO(4)(2-))还原应该会被竞争淘汰。在 H(2)可用性受限的情况下,硝酸盐(NO(3)(-))还原与 H(2)压力成正比,当 H(2)压力达到 3 大气压时完全进行;SO(4)(2-)还原在 H(2)≥3.4 大气压时开始。在不限制 H(2)可用性的情况下,NO(3)(-)是首选电子受体,只有当 NO(3)(-)表面负荷≤0.13 g N/m(2)-day 时才会还原 SO(4)(2-)。我们通过分别针对亚硝酸盐还原酶和异化亚硫酸盐还原酶的定量聚合酶链反应来检测 DB 和 SRB。当 H(2)可用性有限时,随着 H(2)压力的升高,DB 和 SRB 都增加,但当 H(2)可用性不受限时,即使没有 SO(4)(2-)还原,SRB 也不会随着更高的 NO(3)(-)去除通量而下降。SRB 的趋势反映了 SRB 的代谢多样性,使它们能够在生物膜中存活,无论它们是否在还原 SO(4)(2-)。在所有测试的情况下,只有当生物膜内的 NO(3)(-)几乎完全去除,从而缓解 H(2)竞争时,SRB 才能够开始强烈的 SO(4)(2-)还原。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验