Suppr超能文献

开发并评价一种含载有拉替拉韦和依非韦伦纳米粒的温敏阴道凝胶用于 HIV 预防。

Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis.

机构信息

School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.

出版信息

Antiviral Res. 2012 Dec;96(3):430-6. doi: 10.1016/j.antiviral.2012.09.015. Epub 2012 Oct 3.

Abstract

The objective of this investigation was to develop a thermosensitive vaginal gel containing raltegravir+efavirenz loaded PLGA nanoparticles (RAL+EFV-NPs) for pre-exposure prophylaxis of HIV. RAL+EFV-NPs were fabricated using a modified emulsion-solvent evaporation method and characterized for size and zeta potential. The average size and surface charge of RAL+EFV-NP were 81.8±6.4 nm and -23.18±7.18 mV respectively. The average encapsulation efficiency of raltegravir and efavirenz was 55.5% and 98.2% respectively. Thermosensitive vaginal gel containing RAL+EFV-NPs was successfully prepared using a combination of Pluronic F127 (20% w/v) and Pluronic F68 (1% w/v). Incorporation RAL+EFV-NPs in the gel did not result in nanoparticle aggregation and RAL+EFV-NPs containing gel showed thermogelation at 32.5°C. The RAL+EFV-NPs were evaluated for inhibition of HIV-1(NL4-3) using TZM-bl indicator cells. The EC(90) of RAL+EFV-NPs was lower than raltegravir+efavirenz (RAL+EFV) solution but did not reach significance. Compared to control HeLa cells without any treatment, RAL+EFV-NPs or blank gel were not cytotoxic for 14 days in vitro. The intracellular levels of efavirenz in RAL+EFV-NPs treated HeLa cells were above the EC(90) for 14 days whereas raltegravir intracellular concentrations were eliminated within 6 days. Transwell experiments of NPs-in-gel demonstrated rapid transfer of fluorescent nanoparticles from the gel and uptake in HeLa cells within 30 min. These data demonstrate the potential of antiretroviral NP-embedded vagina gels for long-term vaginal pre-exposure prophylaxis of heterosexual HIV-1 transmission.

摘要

本研究旨在开发一种载有拉替拉韦+依非韦伦的温敏阴道凝胶(RAL+EFV-NPs),用于 HIV 暴露前预防。RAL+EFV-NPs 采用改良的乳化溶剂蒸发法制备,并对粒径和 Zeta 电位进行了表征。RAL+EFV-NP 的平均粒径和表面电荷分别为 81.8±6.4nm 和-23.18±7.18mV。拉替拉韦和依非韦伦的平均包封效率分别为 55.5%和 98.2%。采用 Pluronic F127(20%w/v)和 Pluronic F68(1%w/v)组合成功制备了载 RAL+EFV-NPs 的温敏阴道凝胶。RAL+EFV-NPs 掺入凝胶中不会导致纳米颗粒聚集,并且含有 RAL+EFV-NPs 的凝胶在 32.5°C 时表现出温敏胶凝特性。使用 TZM-bl 指示细胞评估 RAL+EFV-NPs 对 HIV-1(NL4-3)的抑制作用。RAL+EFV-NPs 的 EC(90)低于拉替拉韦+依非韦伦(RAL+EFV)溶液,但无统计学意义。与未经任何处理的对照 HeLa 细胞相比,RAL+EFV-NPs 或空白凝胶在体外 14 天内无细胞毒性。载有 RAL+EFV-NPs 的 HeLa 细胞中依非韦伦的细胞内水平在 14 天内高于 EC(90),而拉替拉韦的细胞内浓度在 6 天内消除。NP 凝胶的 Transwell 实验表明,荧光纳米颗粒从凝胶中快速转移,并在 30 分钟内在 HeLa 细胞中摄取。这些数据表明,载有抗逆转录病毒药物的纳米颗粒阴道凝胶有可能用于长期阴道暴露前预防异性恋 HIV-1 传播。

相似文献

1
Development and evaluation of a thermosensitive vaginal gel containing raltegravir+efavirenz loaded nanoparticles for HIV prophylaxis.
Antiviral Res. 2012 Dec;96(3):430-6. doi: 10.1016/j.antiviral.2012.09.015. Epub 2012 Oct 3.
3
Combination antiretroviral drugs in PLGA nanoparticle for HIV-1.
BMC Infect Dis. 2009 Dec 9;9:198. doi: 10.1186/1471-2334-9-198.
4
Drug synergy of tenofovir and nanoparticle-based antiretrovirals for HIV prophylaxis.
PLoS One. 2013 Apr 22;8(4):e61416. doi: 10.1371/journal.pone.0061416. Print 2013.
5
Noncovalent PEG Coating of Nanoparticle Drug Carriers Improves the Local Pharmacokinetics of Rectal Anti-HIV Microbicides.
ACS Appl Mater Interfaces. 2018 Oct 17;10(41):34942-34953. doi: 10.1021/acsami.8b12214. Epub 2018 Oct 4.
6
Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment.
AIDS Res Hum Retroviruses. 2013 May;29(5):746-54. doi: 10.1089/aid.2012.0301. Epub 2013 Feb 1.
8
Nanoparticle-Based ARV Drug Combinations for Synergistic Inhibition of Cell-Free and Cell-Cell HIV Transmission.
Mol Pharm. 2015 Dec 7;12(12):4363-74. doi: 10.1021/acs.molpharmaceut.5b00544. Epub 2015 Nov 18.

引用本文的文献

1
Antiviral role of nanomaterials: a material scientist's perspective.
RSC Adv. 2022 Dec 21;13(1):47-79. doi: 10.1039/d2ra06410c. eCollection 2022 Dec 19.
2
Antifungal activity of alexidine dihydrochloride in a novel diabetic mouse model of dermatophytosis.
Front Cell Infect Microbiol. 2022 Sep 2;12:958497. doi: 10.3389/fcimb.2022.958497. eCollection 2022.
3
Niclosamide-loaded nanoparticles disrupt Candida biofilms and protect mice from mucosal candidiasis.
PLoS Biol. 2022 Aug 17;20(8):e3001762. doi: 10.1371/journal.pbio.3001762. eCollection 2022 Aug.
4
Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity.
ACS Pharmacol Transl Sci. 2022 May 2;5(5):278-298. doi: 10.1021/acsptsci.2c00033. eCollection 2022 May 13.
7
Recent Advances in the Excipients Used in Modified Release Vaginal Formulations.
Materials (Basel). 2022 Jan 3;15(1):327. doi: 10.3390/ma15010327.
8
Virus-Mimicking Polymer Nanoparticles Targeting CD169 Macrophages as Long-Acting Nanocarriers for Combination Antiretrovirals.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):2488-2500. doi: 10.1021/acsami.1c17415. Epub 2022 Jan 7.
9
Novel Antiretroviral Therapeutic Strategies for HIV.
Molecules. 2021 Aug 31;26(17):5305. doi: 10.3390/molecules26175305.
10
Biodegradable polymeric solid implants for ultra-long-acting delivery of single or multiple antiretroviral drugs.
Int J Pharm. 2021 Aug 10;605:120844. doi: 10.1016/j.ijpharm.2021.120844. Epub 2021 Jul 1.

本文引用的文献

1
Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment.
AIDS Res Hum Retroviruses. 2013 May;29(5):746-54. doi: 10.1089/aid.2012.0301. Epub 2013 Feb 1.
2
Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus.
Sci Transl Med. 2012 Jun 13;4(138):138ra79. doi: 10.1126/scitranslmed.3003453.
3
Reformulated tenofovir gel for use as a dual compartment microbicide.
J Antimicrob Chemother. 2012 Sep;67(9):2139-42. doi: 10.1093/jac/dks173. Epub 2012 May 11.
4
Divalent metals and pH alter raltegravir disposition in vitro.
Antimicrob Agents Chemother. 2012 Jun;56(6):3020-6. doi: 10.1128/AAC.06407-11. Epub 2012 Mar 26.
5
Overview of microbicides for the prevention of human immunodeficiency virus.
Best Pract Res Clin Obstet Gynaecol. 2012 Aug;26(4):427-39. doi: 10.1016/j.bpobgyn.2012.01.010. Epub 2012 Mar 2.
6
Design of tenofovir-UC781 combination microbicide vaginal gels.
J Pharm Sci. 2012 May;101(5):1852-64. doi: 10.1002/jps.23089. Epub 2012 Feb 22.
7
Formulation, pharmacokinetics and pharmacodynamics of topical microbicides.
Best Pract Res Clin Obstet Gynaecol. 2012 Aug;26(4):451-62. doi: 10.1016/j.bpobgyn.2012.01.004. Epub 2012 Feb 4.
8
SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans.
PLoS One. 2011;6(9):e24095. doi: 10.1371/journal.pone.0024095. Epub 2011 Sep 15.
9
Specific microbicides in the prevention of HIV infection.
J Intern Med. 2011 Dec;270(6):509-19. doi: 10.1111/j.1365-2796.2011.02454.x. Epub 2011 Oct 27.
10
In-situ gel formulations of econazole nitrate: preparation and in-vitro and in-vivo evaluation.
J Pharm Pharmacol. 2011 Oct;63(10):1274-82. doi: 10.1111/j.2042-7158.2011.01315.x. Epub 2011 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验