Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii, United States of America.
Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America.
PLoS Biol. 2022 Aug 17;20(8):e3001762. doi: 10.1371/journal.pbio.3001762. eCollection 2022 Aug.
Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.
白色念珠菌生物膜是一种复杂的多层细胞群落,对几乎所有类别的抗真菌药物都具有耐药性。生物膜的最底层会经历营养限制,此时白色念珠菌细胞需要呼吸。我们之前的研究报告表明,一种名为 Ndu1 的蛋白对白色念珠菌的线粒体呼吸至关重要;失去 NDU1 会导致白色念珠菌无法在替代碳源上生长,并引发早期生物膜脱落。在这里,我们筛选了一个经过重新利用的 FDA 批准的小分子抑制剂库,以确定那些可以阻止与 NDU1 相关的功能的抑制剂。我们发现一种驱虫药尼氯硝唑(NCL),它不仅可以阻止在醋酸盐上生长、白色念珠菌连接和早期生物膜生长,还可以完全使耐药性白色念珠菌和耳念珠菌的成熟生物膜与其生长表面脱离。为了克服 NCL 已知的较差的溶解度和渗透性,从而影响其体内疗效,我们开发了尼氯硝唑包封的 Eudragit EPO(一种 FDA 批准的聚合物)纳米颗粒(NCL-EPO-NPs),具有高尼氯硝唑载药量,也提供了长期稳定性。所开发的 NCL-EPO-NPs 完全穿透成熟的生物膜,并以低微克浓度实现抗生物膜活性。NCL-EPO-NPs 在白色念珠菌中诱导 ROS 活性,并大大降低真菌的耗氧率,与 NDU1 突变体相似。NCL-EPO-NPs 还显著减轻了氟康唑耐药的白色念珠菌在口咽和阴道念珠菌病小鼠模型中的粘膜皮肤念珠菌病。据我们所知,这是第一项针对生物膜脱落作为去除耐药性白色念珠菌生物膜的目标的研究,并且使用了 FDA 批准的无毒药物的 NPs 来提高生物膜的渗透性和微生物杀伤能力。