Suppr超能文献

外显子水平表达分析确定 MYCN 和 NTRK1 是可变外显子使用的主要决定因素,并能可靠地预测原发性神经母细胞瘤的结局。

Exon-level expression analyses identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict primary neuroblastoma outcome.

机构信息

University Hospital Essen, Childrens Hospital, Department of Hematology/Oncology, Germany.

出版信息

Br J Cancer. 2012 Oct 9;107(8):1409-17. doi: 10.1038/bjc.2012.391.

Abstract

BACKGROUND

Using mRNA expression-derived signatures as predictors of individual patient outcome has been a goal ever since the introduction of microarrays. Here, we addressed whether analyses of tumour mRNA at the exon level can improve on the predictive power and classification accuracy of gene-based expression profiles using neuroblastoma as a model.

METHODS

In a patient cohort comprising 113 primary neuroblastoma specimens expression profiling using exon-level analyses was performed to define predictive signatures using various machine-learning techniques. Alternative transcript use was calculated from relative exon expression. Validation of alternative transcripts was achieved using qPCR- and cell-based approaches.

RESULTS

Both predictors derived from the gene or the exon levels resulted in prediction accuracies >80% for both event-free and overall survival and proved as independent prognostic markers in multivariate analyses. Alternative transcript use was most prominently linked to the amplification status of the MYCN oncogene, expression of the TrkA/NTRK1 neurotrophin receptor and survival.

CONCLUSION

As exon level-based prediction yields comparable, but not significantly better, prediction accuracy than gene expression-based predictors, gene-based assays seem to be sufficiently precise for predicting outcome of neuroblastoma patients. However, exon-level analyses provide added knowledge by identifying alternative transcript use, which should deepen the understanding of neuroblastoma biology.

摘要

背景

自微阵列问世以来,使用 mRNA 表达衍生的特征作为个体患者预后的预测因子一直是一个目标。在这里,我们以神经母细胞瘤为模型,探讨了肿瘤 mRNA 在exon 水平的分析是否可以提高基于基因的表达谱的预测能力和分类准确性。

方法

在包含 113 例原发性神经母细胞瘤标本的患者队列中,使用exon 水平的分析进行表达谱分析,使用各种机器学习技术定义预测特征。相对 exon 表达计算替代转录本的使用。使用 qPCR 和基于细胞的方法验证替代转录本。

结果

来自基因或 exon 水平的两种预测因子均导致无事件生存和总生存的预测准确率>80%,并在多变量分析中被证明是独立的预后标志物。替代转录本的使用与 MYCN 癌基因的扩增状态、TrkA/NTRK1 神经营养因子受体的表达和生存最为密切相关。

结论

由于基于 exon 水平的预测与基于基因表达的预测具有可比但无显著更好的预测准确性,因此基于基因的检测似乎足以精确预测神经母细胞瘤患者的预后。然而,exon 水平的分析通过鉴定替代转录本的使用提供了额外的知识,这应该加深对神经母细胞瘤生物学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64d/3494449/2c93d217b928/bjc2012391f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验