Suppr超能文献

Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase.

作者信息

Collyer C A, Blow D M

机构信息

Blackett Laboratory, Imperial College, London, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 1990 Feb;87(4):1362-6. doi: 10.1073/pnas.87.4.1362.

Abstract

Crystallographic studies of D-xylose isomerase (D-xylose ketol-isomerase, EC 5.3.1.5) incubated to equilibrium with substrate/product mixtures of xylose and xylulose show electron density for a bound intermediate. The accumulation of this bound intermediate shows that the mechanism is a non-Michaelis type. Carrell et al. [Carrell, H. L., Glusker, J. P., Burger, V., Manfre, F., Tritsch, D. & Biellmann, J.-F. (1989) Proc. Natl. Acad. Sci. USA 86, 4440-4444] and the present authors studied crystals of the enzyme-substrate complex under different conditions and made different interpretations of the substrate density, leading to different conclusions about the enzyme mechanism. All authors agree that the bound intermediate of the sugar is in an open-chain form. It is suggested that the higher-temperature study of Carrell et al. may have produced an equilibrium of multiple states, whose density fits poorly to the open-chain substrate, and led to incorrect interpretation. The two groups also bound different closed-ring sugar analogues to the enzyme, but these analogues bind differently. A possible explanation consistent with all the data is that the enzyme operates by a hydride shift mechanism.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c607/53475/e5ea729d436d/pnas01029-0114-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验