Subramani A, Wei Y, Floudas C A
Dept. of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.
AIChE J. 2012 May 1;58(5):1619-1637. doi: 10.1002/aic.12669. Epub 2011 May 31.
The three-dimensional (3-D) structure prediction of proteins, given their amino acid sequence, is addressed using the first principles-based approach ASTRO-FOLD 2.0. The key features presented are: (1) Secondary structure prediction using a novel optimization-based consensus approach, (2) β-sheet topology prediction using mixed-integer linear optimization (MILP), (3) Residue-to-residue contact prediction using a high-resolution distance-dependent force field and MILP formulation, (4) Tight dihedral angle and distance bound generation for loop residues using dihedral angle clustering and non-linear optimization (NLP), (5) 3-D structure prediction using deterministic global optimization, stochastic conformational space annealing, and the full-atomistic ECEPP/3 potential, (6) Near-native structure selection using a traveling salesman problem-based clustering approach, ICON, and (7) Improved bound generation using chemical shifts of subsets of heavy atoms, generated by SPARTA and CS23D. Computational results of ASTRO-FOLD 2.0 on 47 blind targets of the recently concluded CASP9 experiment are presented.
利用基于第一性原理的方法ASTRO - FOLD 2.0,根据氨基酸序列对蛋白质进行三维(3 - D)结构预测。所呈现的关键特性包括:(1)使用基于新型优化的一致性方法进行二级结构预测;(2)使用混合整数线性优化(MILP)进行β - 折叠拓扑预测;(3)使用高分辨率距离相关力场和MILP公式进行残基间接触预测;(4)使用二面角聚类和非线性优化(NLP)为环残基生成紧密的二面角和距离约束;(5)使用确定性全局优化、随机构象空间退火和全原子ECEPP/3势进行三维结构预测;(6)使用基于旅行商问题的聚类方法ICON进行近天然结构选择;(7)使用由SPARTA和CS23D生成的重原子子集的化学位移改进约束生成。展示了ASTRO - FOLD 2.0在最近结束的CASP9实验的47个盲测目标上的计算结果。