Suppr超能文献

在替代进化模型下估计系统发育信号的度量标准比较。

A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models.

机构信息

Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.

出版信息

Genet Mol Biol. 2012 Jul;35(3):673-9. doi: 10.1590/S1415-47572012005000053. Epub 2012 Aug 2.

Abstract

Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophisticated model-based approaches that estimate departure from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg's K-statistics and Pagel's λ) are compared with three statistical approaches [Moran's I autocorrelation coefficient, coefficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)]. Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical approaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.

摘要

已经开发出了几种用于估计比较数据中系统发育信号的指标。这些指标对于指导未来的相关性进化研究以及推断广泛的进化和生态过程(例如,系统发育生态位保守性)都非常重要。尽管如此,其中一些指标的有效性仍存在争议,尤其是在开发出更复杂的基于模型的方法来估计特定进化模型(即布朗运动)的偏离之后。在这里,我们将两种基于模型的指标(Blomberg 的 K 统计量和 Pagel 的 λ)与三种统计方法[Moran 的 I 自相关系数、自回归方法(ARM)的确定系数和系统发育特征向量回归(PVR)]进行了比较。基于对一个具有 209 个物种的系统发育下的布朗运动进化的性状的模拟,我们表明所有指标都彼此强烈相关,尽管是非线性的。我们的分析表明,统计方法提供了有效的结果,并且在详细的系统发育不可用时或者物种之间的性状变异难以用更标准的布朗或 O-U 进化模型来描述时,这些方法可能仍然特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2399/3459419/b98533fbbd57/gmb-35-3-673-gfig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验