Suppr超能文献

TraitTrainR:加速连续性状进化模型下的大规模模拟

TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution.

作者信息

Roa Lozano Jenniffer, Duncan Mataya, McKenna Duane D, Castoe Todd A, DeGiorgio Michael, Adams Richard

机构信息

Center for Agricultural Data Analytics, University of Arkansas, Fayetteville, AR 72701, United States.

Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States.

出版信息

Bioinform Adv. 2024 Dec 9;5(1):vbae196. doi: 10.1093/bioadv/vbae196. eCollection 2025.

Abstract

MOTIVATION

The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature.

RESULTS

We introduce , an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of , and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology.

AVAILABILITY AND IMPLEMENTATION

is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial.

摘要

动机

比较性状数据的规模和范围正以前所未有的速度扩展,而进化建模与模拟方面的最新进展有时难以跟上这一步伐。在这种背景下,用于进行大规模进化模拟的组织良好且灵活的应用程序有望帮助理解模型,更重要的是帮助我们利用从自然界采样的真实性状数据自信地估计模型。

结果

我们引入了TraitTrainR,这是一个R包,旨在促进在连续性状进化的复杂模型下进行高效的大规模模拟。TraitTrainR采用多种输出格式,支持流行的性状数据转换,适应多性状进化,并且在定义输入参数空间和模型堆叠方面表现出灵活性。此外,TraitTrainR允许测量误差,从而能够研究其对进化推断的潜在影响。我们设想TraitTrainR有大量应用,并且通过在三个实证系统发育案例研究中考察进化模型选择问题来展示一个这样的例子。总体而言,这些将TraitTrainR应用于探索模型选择问题的演示强调了其在解决比较生物学中的关键问题(包括与实验设计和统计功效相关的问题)方面的实用性和更广泛的前景。

可用性与实现

TraitTrainR是在R 4.4.0中开发的,可在https://github.com/radamsRHA/TraitTrainR/上免费获取,其中包括详细文档、快速入门指南和逐步教程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a90/11696700/813bc963c659/vbae196f1.jpg

相似文献

1
TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution.
Bioinform Adv. 2024 Dec 9;5(1):vbae196. doi: 10.1093/bioadv/vbae196. eCollection 2025.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Building an adaptive trait simulator package to infer parametric diffusion model along phylogenetic tree.
MethodsX. 2020 Jun 30;7:100978. doi: 10.1016/j.mex.2020.100978. eCollection 2020.
6
Evolutionary Rates Standardized for Evolutionary Space: Perspectives on Trait Evolution.
Trends Ecol Evol. 2018 Jun;33(6):379-389. doi: 10.1016/j.tree.2018.04.001. Epub 2018 Apr 30.
7
A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution.
Syst Biol. 2017 May 1;66(3):299-319. doi: 10.1093/sysbio/syw093.
9

引用本文的文献

1
Discriminating models of trait evolution.
bioRxiv. 2025 Jun 13:2025.06.12.659377. doi: 10.1101/2025.06.12.659377.

本文引用的文献

1
Integrating phylogenies into single-cell RNA sequencing analysis allows comparisons across species, genes, and cells.
PLoS Biol. 2024 May 24;22(5):e3002633. doi: 10.1371/journal.pbio.3002633. eCollection 2024 May.
2
Phylogenetic analysis of viviparity, matrotrophy, and other reproductive patterns in chondrichthyan fishes.
Biol Rev Camb Philos Soc. 2024 Aug;99(4):1314-1356. doi: 10.1111/brv.13070. Epub 2024 Apr 1.
3
Robust Phylogenetic Regression.
Syst Biol. 2024 May 27;73(1):140-157. doi: 10.1093/sysbio/syad070.
4
Evaluating the Performance of Widely Used Phylogenetic Models for Gene Expression Evolution.
Genome Biol Evol. 2023 Dec 1;15(12). doi: 10.1093/gbe/evad211.
5
Phylogenetic inference using generative adversarial networks.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad543.
7
When can we reconstruct the ancestral state? Beyond Brownian motion.
J Math Biol. 2023 May 4;86(6):88. doi: 10.1007/s00285-023-01922-8.
8
Modeling the Evolution of Rates of Continuous Trait Evolution.
Syst Biol. 2023 Jun 17;72(3):590-605. doi: 10.1093/sysbio/syac068.
9
When can we reconstruct the ancestral state? A unified theory.
Theor Popul Biol. 2022 Dec;148:22-27. doi: 10.1016/j.tpb.2022.09.001. Epub 2022 Sep 24.
10
Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks.
Nat Commun. 2022 Jul 6;13(1):3896. doi: 10.1038/s41467-022-31511-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验