Roa Lozano Jenniffer, Duncan Mataya, McKenna Duane D, Castoe Todd A, DeGiorgio Michael, Adams Richard
Center for Agricultural Data Analytics, University of Arkansas, Fayetteville, AR 72701, United States.
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States.
Bioinform Adv. 2024 Dec 9;5(1):vbae196. doi: 10.1093/bioadv/vbae196. eCollection 2025.
The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature.
We introduce , an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of , and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology.
is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial.
比较性状数据的规模和范围正以前所未有的速度扩展,而进化建模与模拟方面的最新进展有时难以跟上这一步伐。在这种背景下,用于进行大规模进化模拟的组织良好且灵活的应用程序有望帮助理解模型,更重要的是帮助我们利用从自然界采样的真实性状数据自信地估计模型。
我们引入了TraitTrainR,这是一个R包,旨在促进在连续性状进化的复杂模型下进行高效的大规模模拟。TraitTrainR采用多种输出格式,支持流行的性状数据转换,适应多性状进化,并且在定义输入参数空间和模型堆叠方面表现出灵活性。此外,TraitTrainR允许测量误差,从而能够研究其对进化推断的潜在影响。我们设想TraitTrainR有大量应用,并且通过在三个实证系统发育案例研究中考察进化模型选择问题来展示一个这样的例子。总体而言,这些将TraitTrainR应用于探索模型选择问题的演示强调了其在解决比较生物学中的关键问题(包括与实验设计和统计功效相关的问题)方面的实用性和更广泛的前景。
TraitTrainR是在R 4.4.0中开发的,可在https://github.com/radamsRHA/TraitTrainR/上免费获取,其中包括详细文档、快速入门指南和逐步教程。