文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

端粒缺失的机制及其对染色体不稳定性的影响。

Mechanisms of telomere loss and their consequences for chromosome instability.

机构信息

Department of Radiation Oncology, University of California at San Francisco San Francisco, CA, USA.

出版信息

Front Oncol. 2012 Oct 4;2:135. doi: 10.3389/fonc.2012.00135. eCollection 2012.


DOI:10.3389/fonc.2012.00135
PMID:23061048
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3463808/
Abstract

The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

摘要

哺乳动物染色体的末端称为端粒,由一个 6 个碱基对的重复序列 TTAGGG 组成,该序列由端粒酶添加。与一种称为 shelterin 的蛋白质复合物结合后,这些端粒重复序列形成一个帽状结构,保护染色体的末端。由于端粒酶表达不足,人类体细胞中的端粒在每次细胞分裂时都会逐渐缩短,这限制了它们的分裂次数。因此,癌症细胞的广泛分裂需要它们获得维持端粒的能力,这可以通过表达端粒酶或通过涉及重组的替代机制来实现。人们普遍认为,癌症细胞中许多染色体重排的来源是端粒酶表达之前发生的广泛端粒缩短的结果。然而,尽管表达了端粒酶,肿瘤细胞仍可能由于端粒丢失而继续表现出染色体不稳定。由于致癌基因诱导的复制应激,癌症细胞中端粒的功能失调,这会导致在脆弱部位(包括端粒)产生双链断裂 (DSB)。端粒附近的 DSB 特别容易导致染色体重排,因为端粒区域缺乏 DSB 修复。端粒附近 DSB 修复的缺陷也是正常人类细胞中电离辐射诱导复制性衰老的重要机制。此外,端粒附近的 DSB 会导致小鼠胚胎干细胞中的染色体不稳定,这表明端粒丢失可能导致可遗传的染色体重排。考虑到这种可能性,人类的端粒区域高度异质,端粒附近的染色体重排通常涉及人类遗传疾病。因此,了解端粒丢失的机制将为人类癌症和遗传疾病提供重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/fa205a23f157/fonc-02-00135-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/a80b8032935a/fonc-02-00135-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/625c6b54407f/fonc-02-00135-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/fa205a23f157/fonc-02-00135-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/a80b8032935a/fonc-02-00135-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/625c6b54407f/fonc-02-00135-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/3463808/fa205a23f157/fonc-02-00135-g003.jpg

相似文献

[1]
Mechanisms of telomere loss and their consequences for chromosome instability.

Front Oncol. 2012-10-4

[2]
Telomere dysfunction and chromosome instability.

Mutat Res. 2011-5-7

[3]
The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line.

PLoS Genet. 2013-3-28

[4]
Increased sensitivity of subtelomeric regions to DNA double-strand breaks in a human cancer cell line.

DNA Repair (Amst). 2009-8-6

[5]
Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells.

Mol Cell Biol. 2002-7

[6]
Telomerase-dependent and -independent chromosome healing in mouse embryonic stem cells.

DNA Repair (Amst). 2008-8-2

[7]
Telomere loss as a mechanism for chromosome instability in human cancer.

Cancer Res. 2010-5-18

[8]
The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks.

Genes Genet Syst. 2018-1-20

[9]
Telomeres, chromosome instability and cancer.

Nucleic Acids Res. 2006-5-8

[10]
The regulation of the DNA damage response at telomeres: focus on kinases.

Biochem Soc Trans. 2021-4-30

引用本文的文献

[1]
Aging Alters mRNA Processing in the Mouse Ovary.

Cells. 2025-6-30

[2]
Assessment of Chromosomal Aberrations and S-phase Fraction in Patients With Esophageal Cancer.

Cureus. 2025-5-15

[3]
The role of telomere and telomerase in cancer and novel therapeutic target: narrative review.

Front Oncol. 2025-2-14

[4]
Immune response accelerated telomere shortening during early life stage of a passerine bird, the blue tit ().

Biol Lett. 2025-1

[5]
Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target.

Biogerontology. 2024-12-26

[6]
Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies.

Foods. 2024-8-26

[7]
Early and Late Effects of Low-Dose X-ray Exposure in Human Fibroblasts: DNA Repair Foci, Proliferation, Autophagy, and Senescence.

Int J Mol Sci. 2024-7-28

[8]
Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases.

Semin Immunopathol. 2024-8-2

[9]
Interstitial Lung Diseases and Non-Small Cell Lung Cancer: Particularities in Pathogenesis and Expression of Driver Mutations.

Genes (Basel). 2024-7-17

[10]
The impact of COVID-19 on "biological aging".

Front Immunol. 2024

本文引用的文献

[1]
Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening.

Genes Dev. 2012-6-1

[2]
Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions.

EMBO J. 2012-5-8

[3]
Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence.

Nat Commun. 2012-2-28

[4]
Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation.

Nat Cell Biol. 2012-3-18

[5]
Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases.

Cell. 2012-2-16

[6]
Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions.

DNA Repair (Amst). 2012-2-11

[7]
The genetics of dyskeratosis congenita.

Cancer Genet. 2011-12

[8]
Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus.

Nat Genet. 2012-1-22

[9]
Human Ku70/80 protein blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50 protein complex.

J Biol Chem. 2011-12-15

[10]
Five dysfunctional telomeres predict onset of senescence in human cells.

EMBO Rep. 2011-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索