Suppr超能文献

DNA 聚合酶 δ在 DNA 复制和基因组维护中的作用。

DNA polymerase delta in DNA replication and genome maintenance.

机构信息

Department of Pathology, The Joseph Gottstien Memorial Cancer Research Laboratory, University of Washington, Seattle, WA 98195-7705, USA.

出版信息

Environ Mol Mutagen. 2012 Dec;53(9):666-82. doi: 10.1002/em.21745. Epub 2012 Oct 13.

Abstract

The eukaryotic genome is in a constant state of modification and repair. Faithful transmission of the genomic information from parent to daughter cells depends upon an extensive system of surveillance, signaling, and DNA repair, as well as accurate synthesis of DNA during replication. Often, replicative synthesis occurs over regions of DNA that have not yet been repaired, presenting further challenges to genomic stability. DNA polymerase δ (pol δ) occupies a central role in all of these processes: catalyzing the accurate replication of a majority of the genome, participating in several DNA repair synthetic pathways, and contributing structurally to the accurate bypass of problematic lesions during translesion synthesis. The concerted actions of pol δ on the lagging strand, pol ϵ on the leading strand, associated replicative factors, and the mismatch repair (MMR) proteins results in a mutation rate of less than one misincorporation per genome per replication cycle. This low mutation rate provides a high level of protection against genetic defects during development and may prevent the initiation of malignancies in somatic cells. This review explores the role of pol δ in replication fidelity and genome maintenance.

摘要

真核生物基因组处于不断修饰和修复的状态。基因组信息从亲代细胞到子细胞的忠实传递依赖于广泛的监控、信号转导和 DNA 修复系统,以及复制过程中 DNA 的准确合成。通常,复制合成发生在尚未修复的 DNA 区域,这对基因组稳定性提出了进一步的挑战。DNA 聚合酶 δ(pol δ)在所有这些过程中都起着核心作用:催化大多数基因组的准确复制,参与几种 DNA 修复合成途径,并在跨损伤合成过程中结构上有助于准确绕过有问题的损伤。pol δ 在滞后链上、pol ϵ 在前导链上、相关复制因子和错配修复(MMR)蛋白的协同作用导致每个复制周期每个基因组的突变率低于一次错误掺入。这种低突变率为发育过程中的遗传缺陷提供了高度保护,并可能防止体细胞恶性肿瘤的发生。本综述探讨了 pol δ 在复制保真度和基因组维护中的作用。

相似文献

1
DNA polymerase delta in DNA replication and genome maintenance.
Environ Mol Mutagen. 2012 Dec;53(9):666-82. doi: 10.1002/em.21745. Epub 2012 Oct 13.
2
Differential correction of lagging-strand replication errors made by DNA polymerases {alpha} and {delta}.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21070-5. doi: 10.1073/pnas.1013048107. Epub 2010 Nov 1.
3
High fidelity and lesion bypass capability of human DNA polymerase delta.
Biochimie. 2009 Sep;91(9):1163-72. doi: 10.1016/j.biochi.2009.06.007. Epub 2009 Jun 18.
4
Active site mutations in mammalian DNA polymerase delta alter accuracy and replication fork progression.
J Biol Chem. 2010 Oct 15;285(42):32264-72. doi: 10.1074/jbc.M110.147017. Epub 2010 Jul 13.
5
The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ.
J Biol Chem. 2012 Apr 6;287(15):12480-90. doi: 10.1074/jbc.M111.332577. Epub 2012 Feb 17.
8
Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α.
DNA Repair (Amst). 2013 Feb 1;12(2):92-6. doi: 10.1016/j.dnarep.2012.11.001. Epub 2012 Dec 11.
9
Mismatch repair balances leading and lagging strand DNA replication fidelity.
PLoS Genet. 2012;8(10):e1003016. doi: 10.1371/journal.pgen.1003016. Epub 2012 Oct 11.
10

引用本文的文献

1
Adeno-Associated Virus 2 (AAV2) - Induced RPA exhaustion generates cellular DNA damage and restricts viral gene expression.
PLoS Pathog. 2025 Aug 18;21(8):e1013142. doi: 10.1371/journal.ppat.1013142. eCollection 2025 Aug.
3
Elucidating the genetic mechanisms governing cytosine base editing outcomes through CRISPRi screens.
Nat Commun. 2025 May 20;16(1):4685. doi: 10.1038/s41467-025-59948-z.
6
The tomato gene Ty-6, encoding DNA polymerase delta subunit 1, confers broad resistance to Geminiviruses.
Theor Appl Genet. 2025 Jan 8;138(1):22. doi: 10.1007/s00122-024-04803-w.
7
Recurrent DNA nicks drive massive expansions of (GAA) repeats.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2413298121. doi: 10.1073/pnas.2413298121. Epub 2024 Nov 25.
8
COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis.
Bioimpacts. 2024;14(6):29968. doi: 10.34172/bi.2024.29968. Epub 2024 Mar 12.
9
Molecular mechanisms of avian immunoglobulin gene diversification and prospect for industrial applications.
Front Immunol. 2024 Sep 13;15:1453833. doi: 10.3389/fimmu.2024.1453833. eCollection 2024.
10
The Proteogenomics of Prostate Cancer Radioresistance.
Cancer Res Commun. 2024 Sep 1;4(9):2463-2479. doi: 10.1158/2767-9764.CRC-24-0292.

本文引用的文献

1
Characterization of human DNA polymerase delta and its subassemblies reconstituted by expression in the MultiBac system.
PLoS One. 2012;7(6):e39156. doi: 10.1371/journal.pone.0039156. Epub 2012 Jun 18.
2
Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12455-60. doi: 10.1073/pnas.1206052109. Epub 2012 Jun 18.
3
Human POLB gene is mutated in high percentage of colorectal tumors.
J Biol Chem. 2012 Jul 6;287(28):23830-9. doi: 10.1074/jbc.M111.324947. Epub 2012 May 10.
4
DNA polymerase δ and ζ switch by sharing accessory subunits of DNA polymerase δ.
J Biol Chem. 2012 May 18;287(21):17281-17287. doi: 10.1074/jbc.M112.351122. Epub 2012 Mar 30.
6
Y-family DNA polymerases and their role in tolerance of cellular DNA damage.
Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):141-52. doi: 10.1038/nrm3289.
7
Phosphorylation of the p68 subunit of Pol δ acts as a molecular switch to regulate its interaction with PCNA.
Biochemistry. 2012 Jan 10;51(1):416-24. doi: 10.1021/bi201638e. Epub 2011 Dec 20.
8
Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes.
Nat Chem Biol. 2011 Nov 27;8(1):125-32. doi: 10.1038/nchembio.721.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验