Suppr超能文献

多隔室聚合物系统:仿生细胞结构和功能。

Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function.

机构信息

Université de Bordeaux, LCPO, CNRS, UMR 5629, F-33600 Pessac, France.

出版信息

Chem Soc Rev. 2013 Jan 21;42(2):512-29. doi: 10.1039/c2cs35312a.

Abstract

The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology.

摘要

细胞无疑是自然界中最复杂、最令人兴奋的系统之一,科学家们仍在努力全面理解它。这种挑战促使材料科学家寻求通过构建具有高附加值和前所未有的特性的仿生材料来复制其完美性。由于其多功能性、坚固性以及当前聚合物化学科学的状态,我们认为基于聚合物的材料在解决仿生学挑战方面构成或代表了理想的候选材料,仿生学挑战定义了本综述的重点。第一步是模拟细胞的结构:其内部隔室,即具有多隔间结构的细胞器,以及其余部分,即细胞器减去细胞质(主要是细胞骨架/细胞质),用凝胶或特定溶液(例如高度浓缩的溶液)在一个隔室中,最后将两者结合起来。实现这第一步结构可以使我们在药物输送系统中大大拓宽可能性的差距。细胞的另一个强大特性在于其代谢功能。因此,第二步是在隔室中实现酶反应,就像细胞器中发生的那样,以高度可控、选择性和有效的方式。我们根据它们的最终概念或设计目的将最令人兴奋的聚合物囊泡纳米反应器分类为两个不同的小节。我们还在一个全面的表格中突出显示了此类工作的关键实验部分。最后,在实现对这些前提条件的控制之后,科学家们能够将它们结合起来并进一步推动仿生学的前沿:从细胞结构模拟到控制生物功能。这种在材料设计中的仿生方法及其未来将激发的研究,被认为将为药物输送、(生物)传感器、(生物)催化和(生物)技术等领域带来巨大的丰富。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验