Department of Neurology, FM Kirby Neurobiology Center, Children's Hospital, Boston, MA 02115, USA.
J Neurophysiol. 2013 Jan;109(1):113-23. doi: 10.1152/jn.00897.2012. Epub 2012 Oct 17.
Over the first few postnatal weeks, extensive remodeling occurs at the developing murine retinogeniculate synapse, the connection between retinal ganglion cells (RGCs) and the visual thalamus. Although numerous studies have described the role of activity in the refinement of this connection, little is known about the mechanisms that regulate glutamate concentration at and around the synapse over development. Here we show that interactions between glutamate transporters and metabotropic glutamate receptors (mGluRs) dynamically control the peak and time course of the excitatory postsynaptic current (EPSC) at the immature synapse. Inhibiting glutamate transporters by bath application of TBOA (DL-threo-β-benzyloxyaspartic acid) prolonged the decay kinetics of both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) currents at all ages. Moreover, at the immature synapse, TBOA-induced increases in glutamate concentration led to the activation of group II/III mGluRs and a subsequent reduction in neurotransmitter release at RGC terminals. Inhibition of this negative-feedback mechanism resulted in a small but significant increase in peak NMDAR EPSCs during basal stimulation and a substantial increase in the peak with coapplication of TBOA. Activation of mGluRs also shaped the synaptic response during high-frequency trains of stimulation that mimic spontaneous RGC activity. At the mature synapse, however, the group II mGluRs and the group III mGluR7-mediated response are downregulated. Our results suggest that transporters reduce spillover of glutamate, shielding NMDARs and mGluRs from the neurotransmitter. Furthermore, mechanisms of glutamate clearance and release interact dynamically to control the glutamate transient at the developing retinogeniculate synapse.
在出生后的最初几周内,发育中的鼠视网膜-视顶盖突触(视网膜神经节细胞(RGCs)和视顶盖之间的连接)会发生广泛的重塑。尽管许多研究已经描述了活动在该连接的细化中的作用,但对于调节发育过程中突触周围谷氨酸浓度的机制知之甚少。在这里,我们表明谷氨酸转运体和代谢型谷氨酸受体(mGluRs)之间的相互作用可以动态控制未成熟突触处兴奋性突触后电流(EPSC)的峰值和时程。通过在浴中应用 TBOA(DL-threo-β-苯甲氧基天冬氨酸)抑制谷氨酸转运体,延长了所有年龄段的 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)和 N-甲基-D-天冬氨酸受体(NMDAR)电流的衰减动力学。此外,在未成熟的突触中,TBOA 诱导的谷氨酸浓度增加导致 II/III 组代谢型谷氨酸受体的激活,从而减少 RGC 末梢的神经递质释放。抑制这种负反馈机制会导致在基础刺激期间 NMDAR EPSC 的峰值略有但显著增加,并且在 TBOA 共同应用时峰值会显著增加。mGluRs 的激活也会在模拟自发 RGC 活动的高频刺激串期间塑造突触反应。然而,在成熟的突触中,II 组代谢型谷氨酸受体和 III 组代谢型谷氨酸受体 7 介导的反应被下调。我们的结果表明,转运体减少了谷氨酸的溢出,使 NMDAR 和 mGluRs 免受神经递质的影响。此外,谷氨酸清除和释放的机制相互作用,动态控制发育中的视网膜-视顶盖突触中的谷氨酸瞬变。