Suppr超能文献

视网膜神经节细胞至丘脑膝状体投射的演变观点。

An evolving view of retinogeniculate transmission.

作者信息

Litvina Elizabeth Y, Chen Chinfei

机构信息

Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115.

出版信息

Vis Neurosci. 2017 Jan;34:E013. doi: 10.1017/S0952523817000104.

Abstract

The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.

摘要

背外侧膝状核(dLGN)的丘脑皮质(TC)中继神经元背负其不准确的名称已有数十年,尽管有确凿证据表明其在视觉处理中的作用超越了“中继”一词所暗示的简单性。视网膜膝状体突触是视网膜神经节细胞与dLGN的TC神经元之间的通信位点。视束中视网膜纤维的激活会引发可靠、快速且强烈的突触后电位,从而驱动TC神经元产生突触后动作电位。数十年来,人们已经知道皮质和皮质下调节系统可调节视网膜膝状体的传递。视网膜膝状体突触在发育完善期间及之后所展现出的动态特性,进一步丰富了dLGN在视网膜信号传递中的作用。在此,我们探讨视网膜膝状体突触传递和可塑性的结构及功能基础,并思考视网膜膝状体突触的复杂性如何赋予视觉信息的皮质下处理一种全新的动态且有影响力的能力。

相似文献

1
An evolving view of retinogeniculate transmission.
Vis Neurosci. 2017 Jan;34:E013. doi: 10.1017/S0952523817000104.
2
Frequency-dependent modulation of retinogeniculate transmission by serotonin.
J Neurosci. 2004 Dec 1;24(48):10950-62. doi: 10.1523/JNEUROSCI.3749-04.2004.
3
Functional Convergence at the Retinogeniculate Synapse.
Neuron. 2017 Oct 11;96(2):330-338.e5. doi: 10.1016/j.neuron.2017.09.037.
4
Changes in input strength and number are driven by distinct mechanisms at the retinogeniculate synapse.
J Neurophysiol. 2014 Aug 15;112(4):942-50. doi: 10.1152/jn.00175.2014. Epub 2014 May 21.
5
Brain-derived neurotrophic factor is a regulator of synaptic transmission in the adult visual thalamus.
J Neurophysiol. 2022 Nov 1;128(5):1267-1277. doi: 10.1152/jn.00540.2021. Epub 2022 Oct 12.
7
Presynaptic modulation of the retinogeniculate synapse.
J Neurosci. 2003 Apr 15;23(8):3130-5. doi: 10.1523/JNEUROSCI.23-08-03130.2003.
8
Different roles for AMPA and NMDA receptors in transmission at the immature retinogeniculate synapse.
J Neurophysiol. 2008 Feb;99(2):629-43. doi: 10.1152/jn.01171.2007. Epub 2007 Nov 21.
9
Absence of plateau potentials in dLGN cells leads to a breakdown in retinogeniculate refinement.
J Neurosci. 2015 Feb 25;35(8):3652-62. doi: 10.1523/JNEUROSCI.2343-14.2015.

引用本文的文献

1
Input-specific synaptic depression shapes temporal integration in mouse visual cortex.
Neuron. 2023 Oct 18;111(20):3255-3269.e6. doi: 10.1016/j.neuron.2023.07.003. Epub 2023 Aug 4.
2
Input-specific synaptic depression shapes temporal integration in mouse visual cortex.
bioRxiv. 2023 Feb 1:2023.01.30.526211. doi: 10.1101/2023.01.30.526211.
3
Loss of Retinogeniculate Synaptic Function in the DBA/2J Mouse Model of Glaucoma.
eNeuro. 2022 Dec 27;9(6). doi: 10.1523/ENEURO.0421-22.2022. Print 2022 Nov-Dec.
4
Structural and Functional Plasticity in the Dorsolateral Geniculate Nucleus of Mice following Bilateral Enucleation.
Neuroscience. 2022 Apr 15;488:44-59. doi: 10.1016/j.neuroscience.2022.01.029. Epub 2022 Feb 4.
5
Development of astrocyte morphology and function in mouse visual thalamus.
J Comp Neurol. 2022 May;530(7):945-962. doi: 10.1002/cne.25261. Epub 2021 Oct 25.
6
Differential Distribution of Ca Channel Subtypes at Retinofugal Synapses.
eNeuro. 2020 Nov 5;7(6). doi: 10.1523/ENEURO.0293-20.2020. Print 2020 Nov/Dec.
7
Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species.
Exp Neurobiol. 2020 Aug 31;29(4):285-299. doi: 10.5607/en20025.
8
A Fine-Scale Functional Logic to Convergence from Retina to Thalamus.
Cell. 2018 May 31;173(6):1343-1355.e24. doi: 10.1016/j.cell.2018.04.041.
9
Functional Convergence at the Retinogeniculate Synapse.
Neuron. 2017 Oct 11;96(2):330-338.e5. doi: 10.1016/j.neuron.2017.09.037.

本文引用的文献

3
Signal Integration in Thalamus: Labeled Lines Go Cross-Eyed and Blurry.
Neuron. 2017 Feb 22;93(4):717-720. doi: 10.1016/j.neuron.2017.02.020.
4
Visual Functions of the Thalamus.
Annu Rev Vis Sci. 2015 Nov;1:351-371. doi: 10.1146/annurev-vision-082114-035920.
5
Activity-dependent development of visual receptive fields.
Curr Opin Neurobiol. 2017 Feb;42:136-143. doi: 10.1016/j.conb.2016.12.007. Epub 2017 Jan 11.
6
Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
J Neurosci. 2017 Jan 4;37(1):226-235. doi: 10.1523/JNEUROSCI.1577-16.2016.
7
Spatial Organization of Chromatic Pathways in the Mouse Dorsal Lateral Geniculate Nucleus.
J Neurosci. 2017 Feb 1;37(5):1102-1116. doi: 10.1523/JNEUROSCI.1742-16.2016. Epub 2016 Dec 16.
10
Cortical Feedback Regulates Feedforward Retinogeniculate Refinement.
Neuron. 2016 Sep 7;91(5):1021-1033. doi: 10.1016/j.neuron.2016.07.040. Epub 2016 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验