Miniaturisation pour la Synthèse l'Analyse et la Protéomique, USR CNRS 3290, Institut Michel-Eugène Chevreul, FR CNRS 2638 and Protéomique, Modifications Post-Traductionnelles et Glycobiologie, IFR 147 Université de Lille 1, Sciences et Technologie, 59655 Villeneuve d'Ascq Cedex, France.
Anal Bioanal Chem. 2013 Jan;405(1):51-61. doi: 10.1007/s00216-012-6422-8. Epub 2012 Oct 18.
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.
傅里叶变换离子回旋共振(FT-ICR)质谱(MS)可实现高分辨率和质量精度,允许识别复杂样品中离子的原始化学式。通过离子隔离和碎片化(MS/MS),我们可以获得更多的结构信息,但 MS/MS 既耗时又耗样,因为在碎片化之前必须隔离每个离子。1987 年,Pfändler 等人提出了一种用于 2D FT-ICR MS 的实验,以便在不隔离离子的情况下使离子碎片化,并在单个 2D 质谱中可视化复杂样品的碎片化,就像二维核磁共振波谱一样。由于电子和计算机的限制,这项技术的研究很少。现代计算机的改进和 FT-ICR 硬件的数字电子技术的使用,现在使得在较宽的质量范围内获取 2D 质谱成为可能。原始实验中使用的细胞内碰撞诱导解离会导致分辨率降低。无气体碎片化模式,如红外多光子解离和电子俘获解离,允许测量高分辨率 2D 质谱。因此,人们重新有兴趣将 2D FT-ICR MS 开发成一种有效的分析方法。2D NMR 光谱学中的改进也可以转移到 2D FT-ICR MS 中。我们描述了 2D FT-ICR MS 的历史,介绍了最近的改进,并展示了用于绘制肽碎片化的分析应用。最后,我们提供了一个术语表,其中定义了 2D FT-ICR MS 领域的几个关键词。