Suppr超能文献

微生物对同时存在的压力的适应性的系统分析。

Systems analysis of microbial adaptations to simultaneous stresses.

作者信息

Carlson Ross P, Oshota Olusegun J, Taffs Reed L

机构信息

Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717-3920, USA,

出版信息

Subcell Biochem. 2012;64:139-57. doi: 10.1007/978-94-007-5055-5_7.

Abstract

Microbes live in multi-factorial environments and have evolved under a variety of concurrent stresses including resource scarcity. Their metabolic organization is a reflection of their evolutionary histories and, in spite of decades of research, there is still a need for improved theoretical tools to explain fundamental aspects of microbial physiology. Using ecological and economic concepts, this chapter explores a resource-ratio based theory to elucidate microbial strategies for extracting and channeling mass and energy. The theory assumes cellular fitness is maximized by allocating scarce resources in appropriate proportions to multiple stress responses. Presented case studies deconstruct metabolic networks into a complete set of minimal biochemical pathways known as elementary flux modes. An economic analysis of the elementary flux modes tabulates enzyme atomic synthesis requirements from amino acid sequences and pathway operating costs from catabolic efficiencies, permitting characterization of inherent tradeoffs between resource investment and phenotype. A set of elementary flux modes with competitive tradeoffs properties can be mathematically projected onto experimental fluxomics datasets to decompose measured phenotypes into metabolic adaptations, interpreted as cellular responses proportional to the experienced culturing stresses. The resource-ratio based method describes the experimental phenotypes with greater accuracy than other contemporary approaches and further analysis suggests the results are both statistically and biologically significant. The insight into metabolic network design principles including tradeoffs associated with concurrent stress adaptation provides a foundation for interpreting physiology as well as for rational control and engineering of medically, environmentally, and industrially relevant microbes.

摘要

微生物生活在多因素环境中,并且在包括资源稀缺在内的各种并发压力下进化。它们的代谢组织反映了它们的进化历史,尽管经过了数十年的研究,但仍然需要改进的理论工具来解释微生物生理学的基本方面。本章运用生态和经济概念,探索一种基于资源比率的理论,以阐明微生物提取和分配物质与能量的策略。该理论假设,通过将稀缺资源以适当比例分配给多种应激反应,细胞适应性可达到最大化。所呈现的案例研究将代谢网络解构为一组完整的最小生化途径,即基本通量模式。对基本通量模式的经济分析列出了根据氨基酸序列得出的酶原子合成需求以及根据分解代谢效率得出的途径运行成本,可以确定资源投资与表型之间固有的权衡关系。一组具有竞争性权衡特性的基本通量模式可以通过数学方法投影到实验通量组学数据集上,将测量到的表型分解为代谢适应性,解释为与所经历的培养压力成比例的细胞反应。基于资源比率的方法比其他当代方法更准确地描述了实验表型,进一步分析表明结果在统计学和生物学上均具有显著性。对代谢网络设计原则的深入了解,包括与并发应激适应相关的权衡,为解释生理学以及对医学、环境和工业相关微生物的合理控制与工程改造提供了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验