Suppr超能文献

分子水平上的权衡和对同时存在的胁迫的代谢适应。

Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors.

机构信息

Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA.

出版信息

Curr Opin Biotechnol. 2010 Oct;21(5):670-6. doi: 10.1016/j.copbio.2010.05.011. Epub 2010 Jul 14.

Abstract

Life is a dynamic process driven by the complex interplay between physical constraints and selection pressures, ranging from nutrient limitation to inhibitory substances to predators. These stressors are not mutually exclusive; microbes have faced concurrent challenges for eons. Genome-enabled systems biology approaches are adapting economic and ecological concepts like tradeoff curves and strategic resource allocation theory to analyze metabolic adaptations to simultaneous stressors. These methodologies can accurately describe and predict metabolic adaptations to concurrent stresses by considering the tradeoff between investment of limiting resources into enzymatic machinery and the resulting cellular function. The approaches represent promising links between computational biology and well-established economic and ecological methodologies for analyzing the interplay between physical constraints and microbial fitness.

摘要

生命是一个由物理约束和选择压力之间复杂相互作用驱动的动态过程,这些压力源包括营养限制、抑制物质和捕食者等。这些压力源不是相互排斥的;微生物已经面临了亿万年的并发挑战。基因组驱动的系统生物学方法正在适应经济和生态概念,如权衡曲线和战略资源分配理论,以分析代谢对同时存在的压力源的适应。这些方法可以通过考虑限制资源投入到酶机制和由此产生的细胞功能之间的权衡,准确地描述和预测代谢对并发压力的适应。这些方法代表了计算生物学与经济和生态方法之间有前途的联系,可用于分析物理约束和微生物适应性之间的相互作用。

相似文献

1
Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors.
Curr Opin Biotechnol. 2010 Oct;21(5):670-6. doi: 10.1016/j.copbio.2010.05.011. Epub 2010 Jul 14.
2
Systems analysis of microbial adaptations to simultaneous stresses.
Subcell Biochem. 2012;64:139-57. doi: 10.1007/978-94-007-5055-5_7.
3
Decomposition of complex microbial behaviors into resource-based stress responses.
Bioinformatics. 2009 Jan 1;25(1):90-7. doi: 10.1093/bioinformatics/btn589. Epub 2008 Nov 13.
4
Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):253-76. doi: 10.1080/10937404.2010.483943.
5
Coordinated resource allocation to plant growth-defense tradeoffs.
New Phytol. 2022 Feb;233(3):1051-1066. doi: 10.1111/nph.17773. Epub 2021 Oct 23.
6
Reverse Ecology: from systems to environments and back.
Adv Exp Med Biol. 2012;751:329-45. doi: 10.1007/978-1-4614-3567-9_15.
7
Development of constraint-based system-level models of microbial metabolism.
Methods Mol Biol. 2012;881:531-49. doi: 10.1007/978-1-61779-827-6_18.
8
Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
J Proteomics. 2011 Dec 10;75(1):284-305. doi: 10.1016/j.jprot.2011.07.010. Epub 2011 Jul 23.
9
Foodomics as part of the host-microbiota-exposome interplay.
J Proteomics. 2016 Sep 16;147:3-20. doi: 10.1016/j.jprot.2016.04.033. Epub 2016 Apr 26.
10
Systems biology as a foundation for genome-scale synthetic biology.
Curr Opin Biotechnol. 2006 Oct;17(5):488-92. doi: 10.1016/j.copbio.2006.08.001. Epub 2006 Aug 23.

引用本文的文献

2
Implications of carbon catabolite repression for plant-microbe interactions.
Plant Commun. 2021 Dec 28;3(2):100272. doi: 10.1016/j.xplc.2021.100272. eCollection 2022 Mar 14.
3
Differential Response of Bacterial Microdiversity to Simulated Global Change.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0242921. doi: 10.1128/aem.02429-21. Epub 2022 Feb 2.
4
Microeconomics of Metabolism: The Warburg Effect as Giffen Behaviour.
Bull Math Biol. 2021 Oct 31;83(12):120. doi: 10.1007/s11538-021-00952-x.
6
7
Bacterial Tradeoffs in Growth Rate and Extracellular Enzymes.
Front Microbiol. 2019 Dec 20;10:2956. doi: 10.3389/fmicb.2019.02956. eCollection 2019.
8
Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor.
Cell Mol Life Sci. 2020 Feb;77(3):395-413. doi: 10.1007/s00018-019-03377-x. Epub 2019 Nov 25.
9
A yield-cost tradeoff governs s decision between fermentation and respiration in carbon-limited growth.
NPJ Syst Biol Appl. 2019 May 1;5:16. doi: 10.1038/s41540-019-0093-4. eCollection 2019.
10
From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.
PLoS Comput Biol. 2017 Apr 13;13(4):e1005409. doi: 10.1371/journal.pcbi.1005409. eCollection 2017 Apr.

本文引用的文献

2
Metabolic flux distributions: genetic information, computational predictions, and experimental validation.
Appl Microbiol Biotechnol. 2010 May;86(5):1243-55. doi: 10.1007/s00253-010-2506-6. Epub 2010 Mar 16.
3
Towards a genome-scale kinetic model of cellular metabolism.
BMC Syst Biol. 2010 Jan 28;4:6. doi: 10.1186/1752-0509-4-6.
4
The genetic landscape of a cell.
Science. 2010 Jan 22;327(5964):425-31. doi: 10.1126/science.1180823.
5
Shifts in growth strategies reflect tradeoffs in cellular economics.
Mol Syst Biol. 2009;5:323. doi: 10.1038/msb.2009.82. Epub 2009 Nov 3.
6
Genome-scale gene/reaction essentiality and synthetic lethality analysis.
Mol Syst Biol. 2009;5:301. doi: 10.1038/msb.2009.56. Epub 2009 Aug 18.
7
Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation.
Metab Eng. 2010 Mar;12(2):150-60. doi: 10.1016/j.ymben.2009.07.006. Epub 2009 Jul 29.
8
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Nat Chem Biol. 2009 Aug;5(8):593-9. doi: 10.1038/nchembio.186. Epub 2009 Jun 28.
9
A critical view of metabolic network adaptations.
HFSP J. 2009;3(1):24-35. doi: 10.2976/1.3020599. Epub 2008 Dec 3.
10
Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism.
Appl Microbiol Biotechnol. 2009 Jan;81(5):813-26. doi: 10.1007/s00253-008-1770-1. Epub 2008 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验