Suppr超能文献

应用接触模式原子力显微镜对 Nafion 膜电极组件进行空间分辨电化学阻抗谱测量。

Application of a contact mode AFM for spatially resolved electrochemical impedance spectroscopy measurements of a Nafion membrane electrode assembly.

机构信息

Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

出版信息

Phys Chem Chem Phys. 2013 Feb 7;15(5):1408-16. doi: 10.1039/c2cp42843a.

Abstract

A Nafion fuel cell membrane is investigated by means of electrochemical atomic force microscopy in different gas atmospheres. From chronoamperometric experiments with a point contact electrode spatially resolved electrochemical impedance spectra are obtained from which information about electrode processes and proton transport in the membrane is derived. In the first part the oxygen reduction reaction is investigated. Due to the absence of diffusion limitation, which is partly a result of the small electrode size, a low frequency inductive loop is observed, which is normally masked in macroscopic electrochemical impedance spectra. The influence of water formation from the oxygen reduction reaction at the cathode is discussed. The second part focuses on a hydrogen/oxygen fuel cell setup. A qualitative explanation is given for the necessity of an applied voltage in addition to the electrochemical potential. Electrochemical impedance spectra obtained at two different positions are compared and fitted based on a Randles-like equivalent circuit. A strongly inhomogeneous performance is observed which is attributed to the properties of the Nafion membrane. The electrolyte resistance and the Nernst impedance are restrictive parameters which describe the diffusion through the membrane.

摘要

采用电化学原子力显微镜在不同气体氛围下研究了 Nafion 燃料电池膜。通过点接触电极的计时安培实验获得了空间分辨电化学阻抗谱,从中可以得出关于电极过程和质子在膜中传输的信息。第一部分研究了氧还原反应。由于不存在扩散限制(这部分是由于电极尺寸较小所致),因此观察到低频感应环路,而在宏观电化学阻抗谱中通常会掩盖该感应环路。讨论了阴极处氧还原反应生成水的影响。第二部分重点介绍了氢/氧燃料电池装置。除了电化学势之外,还给出了施加电压的必要性的定性解释。比较了在两个不同位置获得的电化学阻抗谱,并基于类似于 Randles 的等效电路进行了拟合。观察到强烈的非均相性能,这归因于 Nafion 膜的特性。电解质电阻和能斯特阻抗是描述通过膜扩散的限制参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验