Suppr超能文献

通过基于投影的T2测量实现高时间分辨率的体内血氧测定法。

High temporal resolution in vivo blood oximetry via projection-based T2 measurement.

作者信息

Jain Varsha, Magland Jeremy, Langham Michael, Wehrli Felix W

机构信息

Laboratory of Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Magn Reson Med. 2013 Sep;70(3):785-90. doi: 10.1002/mrm.24519. Epub 2012 Oct 18.

Abstract

Measuring venous oxygen saturation (HbO2) in large blood vessels can provide important information about oxygen delivery and its consumption in vital organs. Quantification of blood's T2 value via MR can be utilized to determine HbO2 noninvasively. We propose a fast method for in vivo blood T2 quantification via computing the complex difference of velocity-encoded projections. As blood flows continuously, its signal can be robustly isolated from the surrounding tissue by computing the complex difference of two central k-space lines with different velocity encodings. This resultant signal can then be measured as a function of echo time for rapidly quantifying T2 of blood. We applied the method to quantify HbO2 in three cerebral veins at rest and in one of the veins in response to hypercapnia. Average HbO2 measurements in superior sagittal sinus (SSS), straight sinus and internal jugular vein in the group were 63 ± 3%, 68 ± 4% and 65 ± 4%, respectively. Average HbO2 values in SSS during baseline, hypercapnia, and recovery were 63 ± 2%, 79 ± 5%, and 61 ± 3%, respectively. When compared with standard T2 quantification techniques, the proposed method is fast, reliable, and robust against partial volume effects.

摘要

测量大血管中的静脉血氧饱和度(HbO2)可为重要器官的氧输送及其消耗提供重要信息。通过磁共振成像(MR)对血液的T2值进行量化可用于无创测定HbO2。我们提出了一种通过计算速度编码投影的复数差值来进行体内血液T2量化的快速方法。由于血液持续流动,通过计算具有不同速度编码的两条中心k空间线的复数差值,其信号可从周围组织中稳健地分离出来。然后可以将该所得信号作为回波时间的函数进行测量,以快速量化血液的T2。我们应用该方法在静息状态下对三条脑静脉以及其中一条静脉在高碳酸血症反应时的HbO2进行量化。该组中矢状窦(SSS)、直窦和颈内静脉的平均HbO2测量值分别为63±3%、68±4%和65±4%。在基线、高碳酸血症和恢复期间,SSS的平均HbO2值分别为63±2%、79±5%和61±3%。与标准T2量化技术相比,所提出的方法快速、可靠,并且对部分容积效应具有鲁棒性。

相似文献

1
High temporal resolution in vivo blood oximetry via projection-based T2 measurement.
Magn Reson Med. 2013 Sep;70(3):785-90. doi: 10.1002/mrm.24519. Epub 2012 Oct 18.
2
T -prepared balanced steady-state free precession (bSSFP) for quantifying whole-blood oxygen saturation at 1.5T.
Magn Reson Med. 2018 Apr;79(4):1893-1900. doi: 10.1002/mrm.26835. Epub 2017 Jul 17.
3
Rapid T2- and susceptometry-based CMRO2 quantification with interleaved TRUST (iTRUST).
Neuroimage. 2015 Feb 1;106:441-50. doi: 10.1016/j.neuroimage.2014.10.061. Epub 2014 Nov 4.
5
Comparison of MRI methods for measuring whole-brain venous oxygen saturation.
Magn Reson Med. 2015 Jun;73(6):2122-8. doi: 10.1002/mrm.25336. Epub 2014 Jun 27.
6
T -oximetry-based cerebral venous oxygenation mapping using Fourier-transform-based velocity-selective pulse trains.
Magn Reson Med. 2022 Sep;88(3):1292-1302. doi: 10.1002/mrm.29300. Epub 2022 May 24.
7
Accuracy of the cylinder approximation for susceptometric measurement of intravascular oxygen saturation.
Magn Reson Med. 2012 Mar;67(3):808-13. doi: 10.1002/mrm.23034. Epub 2011 Aug 19.

引用本文的文献

1
Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism.
Magn Reson Med Sci. 2024 Jul 1;23(3):377-403. doi: 10.2463/mrms.rev.2024-0028. Epub 2024 Jun 13.
2
Quantification of regional CMRO in human brain using dynamic O-MRI at 3T.
Z Med Phys. 2025 Feb;35(1):46-58. doi: 10.1016/j.zemedi.2023.07.004. Epub 2023 Aug 8.
6
Validation of T -based oxygen extraction fraction measurement with O positron emission tomography.
Magn Reson Med. 2021 Jan;85(1):290-297. doi: 10.1002/mrm.28410. Epub 2020 Jul 8.
7
Quantitative theory for the transverse relaxation time of blood water.
NMR Biomed. 2020 May;33(5):e4207. doi: 10.1002/nbm.4207. Epub 2020 Feb 5.
9
Calibrated fMRI for dynamic mapping of CMRO responses using MR-based measurements of whole-brain venous oxygen saturation.
J Cereb Blood Flow Metab. 2020 Jul;40(7):1501-1516. doi: 10.1177/0271678X19867276. Epub 2019 Aug 8.
10
Normal variations in brain oxygen extraction fraction are partly attributed to differences in end-tidal CO.
J Cereb Blood Flow Metab. 2020 Jul;40(7):1492-1500. doi: 10.1177/0271678X19867154. Epub 2019 Aug 5.

本文引用的文献

1
Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI.
J Cereb Blood Flow Metab. 2012 Mar;32(3):403-12. doi: 10.1038/jcbfm.2011.191. Epub 2012 Jan 18.
2
Rapid magnetic resonance measurement of global cerebral metabolic rate of oxygen consumption in humans during rest and hypercapnia.
J Cereb Blood Flow Metab. 2011 Jul;31(7):1504-12. doi: 10.1038/jcbfm.2011.34. Epub 2011 Apr 20.
3
Determination of whole-brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein.
Magn Reson Med. 2011 Feb;65(2):471-9. doi: 10.1002/mrm.22556. Epub 2010 Nov 30.
4
The influence of carbon dioxide on brain activity and metabolism in conscious humans.
J Cereb Blood Flow Metab. 2011 Jan;31(1):58-67. doi: 10.1038/jcbfm.2010.153. Epub 2010 Sep 15.
5
Time-resolved absolute velocity quantification with projections.
Magn Reson Med. 2010 Dec;64(6):1599-606. doi: 10.1002/mrm.22559. Epub 2010 Jul 30.
7
MRI estimation of global brain oxygen consumption rate.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1598-607. doi: 10.1038/jcbfm.2010.49. Epub 2010 Apr 21.
8
Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI.
J Cereb Blood Flow Metab. 2010 Jun;30(6):1094-9. doi: 10.1038/jcbfm.2010.42. Epub 2010 Apr 7.
10
Human whole blood T2 relaxometry at 3 Tesla.
Magn Reson Med. 2009 Feb;61(2):249-54. doi: 10.1002/mrm.21858.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验