Molecular Toxicology Group, Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
ACS Chem Biol. 2013 Jan 18;8(1):179-88. doi: 10.1021/cb300363g. Epub 2012 Oct 29.
Werner syndrome is a premature aging disorder that is caused by defects in the Werner protein (WRN). WRN is a member of the RecQ helicase family and possesses helicase and exonuclease activities. It is involved in various aspects of DNA metabolism such as DNA repair, telomere maintenance, and replication. Poly(ADP-ribose) polymerase 1 (PARP1) is also involved in these processes by catalyzing the formation of the nucleic-acid-like biopolymer poly(ADP-ribose) (PAR). It was previously shown that WRN interacts with PARP1 and that WRN activity is inhibited by PARP1. Using several bioanalytical approaches, here we demonstrate that the enzymatic product of PARP1, i.e., PAR, directly interacts with WRN physically and functionally. First, WRN binds HPLC-size-fractionated short and long PAR in a noncovalent manner. Second, we identified and characterized a PAR-binding motif (PBM) within the WRN sequence and showed that several basic and hydrophobic amino acids are of critical importance for mediating the PAR binding. Third, PAR-binding inhibits the DNA-binding, the helicase and the exonuclease activities of WRN in a concentration-dependent manner. On the basis of our results we propose that the transient nature of PAR produced by living cells would provide a versatile and swiftly reacting control system for WRN's function. More generally, our work underscores the important role of noncovalent PAR-protein interactions as a regulatory mechanism of protein function.
Werner 综合征是一种早发性衰老疾病,由 Werner 蛋白 (WRN) 的缺陷引起。WRN 是 RecQ 解旋酶家族的成员,具有解旋酶和核酸外切酶活性。它参与 DNA 代谢的各个方面,如 DNA 修复、端粒维持和复制。多聚(ADP-核糖)聚合酶 1 (PARP1) 通过催化核酸样生物聚合物多聚(ADP-核糖)(PAR) 的形成,也参与这些过程。先前的研究表明,WRN 与 PARP1 相互作用,并且 PARP1 抑制 WRN 的活性。使用几种生物分析方法,我们在这里证明 PARP1 的酶产物,即 PAR,直接与 WRN 物理和功能相互作用。首先,WRN 以非共价方式结合 HPLC 大小分级的短和长 PAR。其次,我们在 WRN 序列中鉴定并表征了一个 PAR 结合基序 (PBM),并表明几个碱性和疏水性氨基酸对介导 PAR 结合至关重要。第三,PAR 结合以浓度依赖的方式抑制 WRN 的 DNA 结合、解旋酶和核酸外切酶活性。基于我们的结果,我们提出细胞中产生的 PAR 的瞬态性质将为 WRN 的功能提供一种通用且快速反应的控制系统。更一般地说,我们的工作强调了非共价 PAR-蛋白相互作用作为蛋白质功能调节机制的重要作用。