Suppr超能文献

旧识新交:利用种间相互作用检测放线菌中次生代谢产物的产生

Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes.

作者信息

Seyedsayamdost Mohammad R, Traxler Matthew F, Clardy Jon, Kolter Roberto

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.

Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Methods Enzymol. 2012;517:89-109. doi: 10.1016/B978-0-12-404634-4.00005-X.

Abstract

Actinomycetes, a group of filamentous, Gram-positive bacteria, have long been a remarkable source of useful therapeutics. Recent genome sequencing and transcriptomic studies have shown that these bacteria, responsible for half of the clinically used antibiotics, also harbor a large reservoir of gene clusters, which have the potential to produce novel secreted small molecules. Yet, many of these clusters are not expressed under common culture conditions. One reason why these clusters have not been linked to a secreted small molecule lies in the way that actinomycetes have typically been studied: as pure cultures in nutrient-rich media that do not mimic the complex environments in which these bacteria evolved. New methods based on multispecies culture conditions provide an alternative approach to investigating the products of these gene clusters. We have recently implemented binary interspecies interaction assays to mine for new secondary metabolites and to study the underlying biology of interactinomycete interactions. Here, we describe the detailed biological and chemical methods comprising these studies.

摘要

放线菌是一类丝状革兰氏阳性细菌,长期以来一直是有用治疗药物的重要来源。最近的基因组测序和转录组学研究表明,这些产生了一半临床所用抗生素的细菌还拥有大量基因簇,这些基因簇有可能产生新的分泌型小分子。然而,许多这些基因簇在常见培养条件下并不表达。这些基因簇尚未与分泌型小分子联系起来的一个原因在于研究放线菌的典型方式:即在营养丰富的培养基中进行纯培养,而这种培养基并不能模拟这些细菌进化所处的复杂环境。基于多物种培养条件的新方法为研究这些基因簇的产物提供了一种替代方法。我们最近实施了二元种间相互作用测定,以挖掘新的次生代谢产物并研究种间相互作用的潜在生物学机制。在此,我们描述了构成这些研究的详细生物学和化学方法。

相似文献

1
Old meets new: using interspecies interactions to detect secondary metabolite production in actinomycetes.
Methods Enzymol. 2012;517:89-109. doi: 10.1016/B978-0-12-404634-4.00005-X.
3
A Glossary for Chemical Approaches towards Unlocking the Trove of Metabolic Treasures in .
Molecules. 2021 Dec 27;27(1):142. doi: 10.3390/molecules27010142.
4
Renaissance in antibacterial discovery from actinomycetes.
Curr Opin Pharmacol. 2008 Oct;8(5):557-63. doi: 10.1016/j.coph.2008.04.008. Epub 2008 Jun 3.
5
Triggers and cues that activate antibiotic production by actinomycetes.
J Ind Microbiol Biotechnol. 2014 Feb;41(2):371-86. doi: 10.1007/s10295-013-1309-z. Epub 2013 Aug 2.
6
Ecology and genomics of Actinobacteria: new concepts for natural product discovery.
Nat Rev Microbiol. 2020 Oct;18(10):546-558. doi: 10.1038/s41579-020-0379-y. Epub 2020 Jun 1.
8
Response of Secondary Metabolism of Hypogean Actinobacterial Genera to Chemical and Biological Stimuli.
Appl Environ Microbiol. 2018 Sep 17;84(19). doi: 10.1128/AEM.01125-18. Print 2018 Oct 1.

引用本文的文献

1
Actinomycetes associated with hymenopteran insects: a promising source of bioactive natural products.
Front Microbiol. 2024 Feb 28;15:1303010. doi: 10.3389/fmicb.2024.1303010. eCollection 2024.
2
Exploring the Interspecific Interactions and the Metabolome of the Soil Isolate Hylemonella gracilis.
mSystems. 2023 Feb 23;8(1):e0057422. doi: 10.1128/msystems.00574-22. Epub 2022 Dec 20.
3
Corncob structures in dental plaque reveal microhabitat taxon specificity.
Microbiome. 2022 Sep 5;10(1):145. doi: 10.1186/s40168-022-01323-x.
4
A taxonomically representative strain collection to explore xenobiotic and secondary metabolism in bacteria.
PLoS One. 2022 Jul 14;17(7):e0271125. doi: 10.1371/journal.pone.0271125. eCollection 2022.
7
Chemical Ecology of Strain A10 Associated with Carpenter Ant .
Microorganisms. 2020 Dec 9;8(12):1948. doi: 10.3390/microorganisms8121948.
8
Development of a Robust and Quantitative High-Throughput Screening Method for Antibiotic Production in Bacterial Libraries.
ACS Omega. 2019 Sep 13;4(13):15414-15420. doi: 10.1021/acsomega.9b01461. eCollection 2019 Sep 24.
9
Massively parallel screening of synthetic microbial communities.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12804-12809. doi: 10.1073/pnas.1900102116. Epub 2019 Jun 11.
10
Bioactivity-HiTES Unveils Cryptic Antibiotics Encoded in Actinomycete Bacteria.
ACS Chem Biol. 2019 Apr 19;14(4):767-774. doi: 10.1021/acschembio.9b00049. Epub 2019 Mar 19.

本文引用的文献

1
Taking a genetic scalpel to the Streptomyces colony.
Microbiology (Reading). 1998 Jun;144(6):1465-1478. doi: 10.1099/00221287-144-6-1465.
2
Natural products as sources of new drugs over the 30 years from 1981 to 2010.
J Nat Prod. 2012 Mar 23;75(3):311-35. doi: 10.1021/np200906s. Epub 2012 Feb 8.
3
Structure and biosynthesis of amychelin, an unusual mixed-ligand siderophore from Amycolatopsis sp. AA4.
J Am Chem Soc. 2011 Aug 3;133(30):11434-7. doi: 10.1021/ja203577e. Epub 2011 Jul 7.
4
Taxonomic and ecological studies of actinomycetes from Vietnam: isolation and genus-level diversity.
J Antibiot (Tokyo). 2011 Sep;64(9):599-606. doi: 10.1038/ja.2011.40. Epub 2011 May 25.
5
Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples.
Syst Appl Microbiol. 2011 Dec;34(8):606-16. doi: 10.1016/j.syapm.2011.03.008. Epub 2011 May 18.
7
Complete genome sequence of Catenulispora acidiphila type strain (ID 139908).
Stand Genomic Sci. 2009 Sep 24;1(2):119-25. doi: 10.4056/sigs.17259.
8
Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp.
Org Lett. 2011 Feb 18;13(4):752-5. doi: 10.1021/ol102991d. Epub 2011 Jan 19.
9
A guide to successful bioprospecting: informed by actinobacterial systematics.
Antonie Van Leeuwenhoek. 2010 Aug;98(2):119-42. doi: 10.1007/s10482-010-9460-2. Epub 2010 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验