Suppr超能文献

多元矩生成函数在射线照相增感屏 - 胶片系统中信号与噪声传播分析中的应用。

An application of multivariate moment-generating functions to the analysis of signal and noise propagation in radiographic screen-film systems.

作者信息

Van Metter R, Rabbani M

机构信息

Health Sciences, Research Laboratories, Eastman Kodak Company, Rochester, New York 14650.

出版信息

Med Phys. 1990 Jan-Feb;17(1):65-71. doi: 10.1118/1.596529.

Abstract

Previous studies [J. Opt. Soc. Am. 4A 895-901 (1987)] have shown the utility of multivariate moment-generating functions for analyzing the influence of stochastic amplifying and scattering mechanisms on the transfer of signal and noise through multistage imaging systems. Recently, these studies were extended to include cases in which the amplification or scattering parameters are themselves stochastic variables [J. Opt. Soc. Am. 6A, 1156-1164 (1989)]. In this paper we consider a special case in which amplification is followed by scattering such that the same random variable which characterizes the parameters of each amplification process also characterizes the parameters of the subsequent scattering of the amplified output events. In radiographic imaging, this can be used to describe the physics of the depth dependence of emission efficiency and light scatter in x-ray intensifying screens, which was originally treated by Lubberts [J. Opt. Soc. Am. 58, 1475-1483 (1968]). In this work Lubberts' original results are rederived in a more general form. They are then illustrated in terms of a diffusion model [Appl. Opt. 12, 1865-1870 (1973)] for light scatter within the intensifying screen.

摘要

先前的研究[《美国光学学会志》4A 895 - 901 (1987)]表明,多元矩生成函数在分析随机放大和散射机制对信号与噪声通过多级成像系统传输的影响方面具有实用性。最近,这些研究扩展到包括放大或散射参数本身为随机变量的情况[《美国光学学会志》6A, 1156 - 1164 (1989)]。在本文中,我们考虑一种特殊情况,即先进行放大,然后进行散射,使得表征每个放大过程参数的同一随机变量也表征放大输出事件后续散射的参数。在射线成像中,这可用于描述X射线增感屏中发射效率和光散射的深度依赖性物理过程,该过程最初由卢伯茨[《美国光学学会志》58, 1475 - 1483 (1968)]进行了研究。在这项工作中,卢伯茨的原始结果以更通用的形式重新推导得出。然后,根据增感屏内光散射的扩散模型[《应用光学》12, 1865 - 1870 (1973)]对这些结果进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验