Suppr超能文献

模拟用于诊断和放射治疗成像的闪烁探测器中光学光子的传输。

Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging.

作者信息

Roncali Emilie, Mosleh-Shirazi Mohammad Amin, Badano Aldo

机构信息

Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America.

出版信息

Phys Med Biol. 2017 Oct 4;62(20):R207-R235. doi: 10.1088/1361-6560/aa8b31.

Abstract

Computational modelling of radiation transport can enhance the understanding of the relative importance of individual processes involved in imaging systems. Modelling is a powerful tool for improving detector designs in ways that are impractical or impossible to achieve through experimental measurements. Modelling of light transport in scintillation detectors used in radiology and radiotherapy imaging that rely on the detection of visible light plays an increasingly important role in detector design. Historically, researchers have invested heavily in modelling the transport of ionizing radiation while light transport is often ignored or coarsely modelled. Due to the complexity of existing light transport simulation tools and the breadth of custom codes developed by users, light transport studies are seldom fully exploited and have not reached their full potential. This topical review aims at providing an overview of the methods employed in freely available and other described optical Monte Carlo packages and analytical models and discussing their respective advantages and limitations. In particular, applications of optical transport modelling in nuclear medicine, diagnostic and radiotherapy imaging are described. A discussion on the evolution of these modelling tools into future developments and applications is presented.

摘要

辐射传输的计算建模可以增进对成像系统中各个过程相对重要性的理解。建模是一种强大的工具,能够以实验测量无法实现或不切实际的方式改进探测器设计。在放射学和放射治疗成像中使用的闪烁探测器中,依赖于可见光检测的光传输建模在探测器设计中发挥着越来越重要的作用。从历史上看,研究人员在电离辐射传输建模方面投入了大量精力,而光传输往往被忽视或进行粗略建模。由于现有光传输模拟工具的复杂性以及用户开发的自定义代码的广度,光传输研究很少得到充分利用,尚未发挥其全部潜力。本专题综述旨在概述免费可用的以及其他所述光学蒙特卡罗软件包和分析模型中采用的方法,并讨论它们各自的优缺点。特别介绍了光传输建模在核医学、诊断和放射治疗成像中的应用。还讨论了这些建模工具在未来发展和应用中的演变。

相似文献

1
Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging.
Phys Med Biol. 2017 Oct 4;62(20):R207-R235. doi: 10.1088/1361-6560/aa8b31.
4
Optical simulation of monolithic scintillator detectors using GATE/GEANT4.
Phys Med Biol. 2010 Mar 21;55(6):1659-75. doi: 10.1088/0031-9155/55/6/009. Epub 2010 Feb 24.
5
Analytical calculation of the lower bound on timing resolution for PET scintillation detectors comprising high-aspect-ratio crystal elements.
Phys Med Biol. 2015 Jul 7;60(13):5141-61. doi: 10.1088/0031-9155/60/13/5141. Epub 2015 Jun 17.
6
The timing resolution of scintillation-detector systems: Monte Carlo analysis.
Phys Med Biol. 2009 Nov 7;54(21):6495-513. doi: 10.1088/0031-9155/54/21/004. Epub 2009 Oct 9.
8
Characterizing the response of miniature scintillation detectors when irradiated with proton beams.
Phys Med Biol. 2008 Apr 7;53(7):1865-76. doi: 10.1088/0031-9155/53/7/004. Epub 2008 Mar 10.

引用本文的文献

1
optiGAN: a deep learning-based alternative to optical photon tracking in Python-based GATE (10+).
Phys Med Biol. 2025 Jul 2;70(13):135009. doi: 10.1088/1361-6560/ade2b5.
2
An applied noise model for scintillation-based CCD detectors in transmission electron microscopy.
Sci Rep. 2025 Jan 30;15(1):3815. doi: 10.1038/s41598-025-85982-4.
3
Radiation Detectors and Sensors in Medical Imaging.
Sensors (Basel). 2024 Sep 26;24(19):6251. doi: 10.3390/s24196251.
4
PET detectors with depth-of-interaction and time-of-flight capabilities.
Radiol Phys Technol. 2024 Sep;17(3):596-609. doi: 10.1007/s12194-024-00821-x. Epub 2024 Jun 18.
5
Optimization of scintillator-reflector optical interfaces for the LUT Davis model.
Med Phys. 2021 Sep;48(9):4883-4899. doi: 10.1002/mp.15109. Epub 2021 Aug 3.
6
gPET: a GPU-based, accurate and efficient Monte Carlo simulation tool for PET.
Phys Med Biol. 2019 Dec 13;64(24):245002. doi: 10.1088/1361-6560/ab5610.

本文引用的文献

2
An integrated model of scintillator-reflector properties for advanced simulations of optical transport.
Phys Med Biol. 2017 Jun 21;62(12):4811-4830. doi: 10.1088/1361-6560/aa6ca5. Epub 2017 Apr 11.
4
Calculation of extrapolation curves in the 4π(LS)β-γ coincidence technique with the Monte Carlo code Geant4.
Appl Radiat Isot. 2016 Mar;109:319-324. doi: 10.1016/j.apradiso.2015.12.028. Epub 2015 Dec 8.
5
Monte Carlo calculations of PET coincidence timing: single and double-ended readout.
Phys Med Biol. 2015 Sep 21;60(18):7309-38. doi: 10.1088/0031-9155/60/18/7309. Epub 2015 Sep 9.
6
Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study.
Biomed Opt Express. 2015 May 26;6(6):2220-30. doi: 10.1364/BOE.6.002220. eCollection 2015 Jun 1.
8
MODELING TIME DISPERSION DUE TO OPTICAL PATH LENGTH DIFFERENCES IN SCINTILLATION DETECTORS.
Acta Phys Pol B Proc Suppl. 2014 Mar 14;7(4):725-734. doi: 10.5506/APhysPolBSupp.7.725.
9
Studying the response of a plastic scintillator to gamma rays using the Geant4 Monte Carlo code.
Appl Radiat Isot. 2015 May;99:63-8. doi: 10.1016/j.apradiso.2015.02.017. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验