Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, P K 1072, 20080 Donostia, Euskadi, Spain.
J Inorg Biochem. 2012 Dec;117:118-23. doi: 10.1016/j.jinorgbio.2012.09.008. Epub 2012 Sep 12.
The possibility for an Al-superoxide complex to reduce Fe(III) to Fe(II), promoting oxidative damage through the Fenton reaction, is investigated using highly accurate ab initio methods and density functional theory in conjunction with solvation continuum methods to simulate bulk solvent effects. It is found that the redox reaction between Al-superoxide and Fe(III) to produce Fe(II) is exothermic. Moreover, the loss of an electron from the superoxide radical ion in the Al-superoxide complex leads to a spontaneous dissociation of molecular oxygen from aluminum, recovering therefore an Al(3+) hexahydrated complex. As demonstrated in previous studies, this complex is again prone to stabilize another superoxide molecule, suggesting a catalytic cycle that augments the concentration of Fe(II) in the presence of Al(III). Similar results are found for Al(OH)(2+) and Al(OH)(2)(+) hydrolytic species. Our work reinforces the idea that the presence of aluminum in biological systems could lead to an important pro-oxidant activity through a superoxide formation mechanism.
使用高精度的从头算方法和密度泛函理论,并结合溶剂化连续体方法来模拟体相溶剂效应,研究了 Al-超氧化物复合物将 Fe(III)还原为 Fe(II)的可能性,从而通过 Fenton 反应促进氧化损伤。研究发现,Al-超氧化物与 Fe(III)之间的氧化还原反应产生 Fe(II)是放热的。此外,Al-超氧自由基复合物中氧自由基失去一个电子会导致铝分子氧自发解离,从而恢复六水合 Al(3+)配合物。正如之前的研究所示,这种配合物再次容易稳定另一个超氧分子,这表明在 Al(III)存在下,该配合物会增强 Fe(II)的浓度,从而形成一个催化循环。对于 Al(OH)(2+)和 Al(OH)(2)(+)水解物种也得到了类似的结果。我们的工作进一步证实了这样一种观点,即在生物系统中存在铝可能会通过超氧化物形成机制导致重要的促氧化剂活性。