1] CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France [2] Université de Toulouse, UPS, IPBS, Toulouse, France.
Oncogene. 2013 Sep 12;32(37):4387-96. doi: 10.1038/onc.2012.462. Epub 2012 Oct 22.
Tumor cells adaptation to severe oxygen deprivation (hypoxia) plays a major role in tumor progression. The transcription factor HIF-1 (hypoxia-inducible factor 1), whose α-subunit is stabilized under hypoxic conditions is a key component of this process. Recent studies showed that two members of the phosphoinositide 3-kinase-related kinases (PIKKs) family, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), regulate the hypoxic-dependent accumulation of HIF-1. These proteins initiate cellular stress responses when DNA damage occurs. In addition, it has been demonstrated that extreme hypoxia induces a replicative stress resulting in regions of single-stranded DNA at stalled replication forks and the activation of ATR (ataxia telangiectasia and Rad3 related protein), another member of the PIKKs family. Here, we show that even less severe hypoxia (0.1% O2) also induces activation of ATR through replicative stress. Importantly, in using either transiently silenced ATR cells, cells expressing an inactive form of ATR or cells exposed to an ATR inhibitor (CGK733), we demonstrate that hypoxic ATR activation positively regulates the key transcription factor HIF-1 independently of the checkpoint kinase Chk1. We show that ATR kinase activity regulates HIF-1α at the translational level and we find that the elements necessary for the regulation of HIF-1α translation are located within the coding region of HIF-1α mRNA. Finally, by using three independent cellular models, we clearly show that the loss of ATR expression and/or kinase activity results in the decrease of HIF-1 DNA binding under hypoxia and consequently affects protein expression levels of two HIF-1 target genes, GLUT-1 and CAIX. Taken together, our data show a new function for ATR in cellular adaptation to hypoxia through regulation of HIF-1α translation. Our work offers new prospect for cancer therapy using ATR inhibitors with the potential to decrease cellular adaptation in hypoxic tumors.
肿瘤细胞适应严重缺氧(低氧)在肿瘤进展中起着重要作用。转录因子 HIF-1(缺氧诱导因子 1)的α亚基在低氧条件下稳定,是该过程的关键组成部分。最近的研究表明,磷酸肌醇 3-激酶相关激酶(PIKKs)家族的两个成员,ATM(共济失调毛细血管扩张突变)和 DNA-PK(DNA 依赖性蛋白激酶),调节 HIF-1 的低氧依赖性积累。这些蛋白在发生 DNA 损伤时启动细胞应激反应。此外,已经证明极端缺氧会诱导复制应激,导致停滞复制叉处的单链 DNA 区域和 ATR(共济失调毛细血管扩张和 Rad3 相关蛋白)的激活,ATR 是 PIKKs 家族的另一个成员。在这里,我们表明,即使是较轻的缺氧(0.1%O2)也会通过复制应激诱导 ATR 的激活。重要的是,通过使用瞬时沉默的 ATR 细胞、表达无活性形式的 ATR 的细胞或暴露于 ATR 抑制剂(CGK733)的细胞,我们证明低氧 ATR 激活独立于检查点激酶 Chk1 正向调节关键转录因子 HIF-1。我们表明 ATR 激酶活性在翻译水平上调节 HIF-1α,并且我们发现调节 HIF-1α 翻译所必需的元件位于 HIF-1α mRNA 的编码区。最后,通过使用三个独立的细胞模型,我们清楚地表明,ATR 表达和/或激酶活性的丧失导致缺氧下 HIF-1 DNA 结合减少,从而影响 HIF-1 两个靶基因 GLUT-1 和 CAIX 的蛋白表达水平。总之,我们的数据表明 ATR 通过调节 HIF-1α 翻译在细胞适应低氧中具有新的功能。我们的工作为使用 ATR 抑制剂进行癌症治疗提供了新的前景,有可能降低低氧肿瘤中的细胞适应性。