Suppr超能文献

利用集成超声和光声成像导管进行体内血管内光声成象的可行性。

Feasibility of in vivo intravascular photoacoustic imaging using integrated ultrasound and photoacoustic imaging catheter.

机构信息

University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas 78712, USA.

出版信息

J Biomed Opt. 2012 Sep;17(9):96008-1. doi: 10.1117/1.JBO.17.9.096008.

Abstract

Pilot studies of in vivo combined intravascular ultrasound (IVUS) and intravascular photoacoustic (IVPA) imaging are reported. A recently introduced prototype of an integrated IVUS/IVPA imaging catheter consisting of a single-element ultrasound transducer and a light delivery system based on a single optical fiber was adapted and used for in vivo imaging of a coronary stent deployed in a rabbit's thoracic aorta in the presence of luminal blood. The results suggest that in vivo IVUS/IVPA imaging is feasible using the integrated IVUS/IVPA imaging catheter. The challenges of in vivo combined IVUS/IVPA imaging are discussed, and further improvements on the design of the catheter and the clinical imaging system are proposed.

摘要

现报道体内血管内超声(IVUS)和血管内光声(IVPA)成像的初步研究结果。对一种新开发的基于单根光纤的单元件超声换能器和光传输系统的集成 IVUS/IVPA 成像导管原型进行了改进,并将其用于在存在管腔血液的情况下对兔胸主动脉中部署的冠状动脉支架进行体内成像。结果表明,使用集成的 IVUS/IVPA 成像导管进行体内 IVUS/IVPA 成像具有可行性。本文还讨论了体内联合 IVUS/IVPA 成像的挑战,并提出了对导管和临床成像系统设计的进一步改进。

相似文献

3
Intravascular ultrasonic-photoacoustic (IVUP) endoscope with 2.2-mm diameter catheter for medical imaging.
Comput Med Imaging Graph. 2015 Oct;45:57-62. doi: 10.1016/j.compmedimag.2015.07.008. Epub 2015 Jul 22.
4
Development of a catheter for combined intravascular ultrasound and photoacoustic imaging.
Rev Sci Instrum. 2010 Jan;81(1):014901. doi: 10.1063/1.3274197.
5
Intravascular photoacoustic imaging at 35 and 80 MHz.
J Biomed Opt. 2012 Oct;17(10):106005. doi: 10.1117/1.JBO.17.10.106005.
6
Real-Time Intravascular Ultrasound and Photoacoustic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):141-149. doi: 10.1109/TUFFC.2016.2640952.
7
Intravascular photoacoustic imaging using an IVUS imaging catheter.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 May;54(5):978-86. doi: 10.1109/tuffc.2007.343.
8
Ultrafine intravascular photoacoustic endoscope with a 0.7  mm diameter probe.
Opt Lett. 2019 Nov 15;44(22):5406-5409. doi: 10.1364/OL.44.005406.
9
In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis.
Ultrasound Med Biol. 2012 Dec;38(12):2098-103. doi: 10.1016/j.ultrasmedbio.2012.08.006. Epub 2012 Oct 12.
10
Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood.
J Biomed Opt. 2012 Oct;17(10):106016. doi: 10.1117/1.JBO.17.10.106016.

引用本文的文献

1
Optical theranostics in ischemic heart disease: from molecular insights to clinical translation.
Theranostics. 2025 Jun 9;15(14):6789-6817. doi: 10.7150/thno.114307. eCollection 2025.
2
A high-sensitivity high-resolution intravascular photoacoustic catheter through mode cleaning in a graded-index fiber.
Photoacoustics. 2023 Jan 6;29:100451. doi: 10.1016/j.pacs.2023.100451. eCollection 2023 Feb.
3
Silicon-photonics focused ultrasound detector for minimally invasive optoacoustic imaging.
Biomed Opt Express. 2022 Nov 7;13(12):6229-6244. doi: 10.1364/BOE.470295. eCollection 2022 Dec 1.
4
Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends.
Front Physiol. 2022 Oct 19;13:1036621. doi: 10.3389/fphys.2022.1036621. eCollection 2022.
5
Advances in Endoscopic Photoacoustic Imaging.
Photonics. 2021 Jul;8(7). doi: 10.3390/photonics8070281. Epub 2021 Jul 16.
6
Review on Laser Technology in Intravascular Imaging and Treatment.
Aging Dis. 2022 Feb 1;13(1):246-266. doi: 10.14336/AD.2021.0711. eCollection 2022 Feb.
7
Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging.
Adv Exp Med Biol. 2021;1310:239-341. doi: 10.1007/978-981-33-6064-8_11.
8
Side-viewing photoacoustic waveguide endoscopy.
Photoacoustics. 2020 Mar 10;19:100167. doi: 10.1016/j.pacs.2020.100167. eCollection 2020 Sep.
9
Minimally invasive photoacoustic imaging: Current status and future perspectives.
Photoacoustics. 2019 Oct 31;16:100146. doi: 10.1016/j.pacs.2019.100146. eCollection 2019 Dec.
10
Intravascular Photothermal Strain Imaging for Lipid Detection.
Sensors (Basel). 2018 Oct 24;18(11):3609. doi: 10.3390/s18113609.

本文引用的文献

1
Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm.
J Biomed Opt. 1999 Jan;4(1):36-46. doi: 10.1117/1.429919.
4
All-optical scanhead for ultrasound and photoacoustic dual-modality imaging.
Opt Express. 2012 Jan 16;20(2):1588-96. doi: 10.1364/OE.20.001588.
6
Optical molecular imaging of atherosclerosis using nanoparticles: shedding new light on the darkness.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 Jul-Aug;3(4):376-88. doi: 10.1002/wnan.139. Epub 2011 Mar 29.
7
Intravascular photoacoustic imaging of human coronary atherosclerosis.
Opt Lett. 2011 Mar 1;36(5):597-9. doi: 10.1364/OL.36.000597.
8
Intravascular Photoacoustic Imaging.
IEEE J Quantum Electron. 2010 Jun 3;16(3):588-599. doi: 10.1109/JSTQE.2009.2037023.
9
Silica-coated gold nanorods as photoacoustic signal nanoamplifiers.
Nano Lett. 2011 Feb 9;11(2):348-54. doi: 10.1021/nl1042006. Epub 2011 Jan 18.
10
Integrated intravascular ultrasound and photoacoustic imaging scan head.
Opt Lett. 2010 Sep 1;35(17):2892-4. doi: 10.1364/OL.35.002892.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验