Institute of Electronic Structure and Laser, FORTH, PO Box 1527, 71110 Heraklio, Crete, Greece.
J Phys Condens Matter. 2012 Nov 14;24(45):455801. doi: 10.1088/0953-8984/24/45/455801. Epub 2012 Oct 19.
In this work, we introduce a new perspective in explaining the origin of magnetism in dilute magnetic semiconductors, carbon-based materials and other related materials. According to our proposal, the magnetism in these materials is the result of the synergistic action of defect-induced electronic processes mostly of local character which can provide magnetic moments and develop a ferromagnetic coupling among them. This synergy is realizable via appropriate codoping which appears as a general and generic approach. In the present report, we use ab initio results to demonstrate that in a diverse sample of systems including codoped ZnO, GaN, TiO(2) and carbon-based materials, the ferromagnetic coupling that is developed among the doped (or defect-induced) magnetic moments results from the interaction of spin-polarized neighborhoods centered at the defect sites. Our results also give evidence that bipartite codopant configurations can further enhance the ferromagnetic features of these systems significantly.
在这项工作中,我们引入了一种新的观点来解释稀磁半导体、碳基材料和其他相关材料中磁性的起源。根据我们的提议,这些材料中的磁性是由缺陷诱导的电子过程的协同作用产生的,这些电子过程主要具有局域特征,能够提供磁矩并在它们之间发展铁磁耦合。这种协同作用可以通过适当的共掺杂来实现,这是一种通用的方法。在本报告中,我们使用从头算的结果证明,在包括共掺杂 ZnO、GaN、TiO(2)和碳基材料在内的多种系统中,掺杂(或缺陷诱导)磁矩之间发展的铁磁耦合源自于缺陷位置处的自旋极化近邻之间的相互作用。我们的结果还表明,双位共掺杂构型可以显著增强这些体系的铁磁特性。