Suppr超能文献

用于高分辨率膜研究的近场扫描光学显微镜。

Near-field scanning optical microscopy for high-resolution membrane studies.

作者信息

Huckabay Heath A, Armendariz Kevin P, Newhart William H, Wildgen Sarah M, Dunn Robert C

机构信息

Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.

出版信息

Methods Mol Biol. 2013;950:373-94. doi: 10.1007/978-1-62703-137-0_21.

Abstract

The desire to directly probe biological structures on the length scales that they exist has driven the steady development of various high-resolution microscopy techniques. Among these, optical microscopy and, in particular, fluorescence-based approaches continue to occupy dominant roles in biological studies given their favorable attributes. Fluorescence microscopy is both sensitive and specific, is generally noninvasive toward biological samples, has excellent temporal resolution for dynamic studies, and is relatively inexpensive. Light-based microscopies can also exploit a myriad of contrast mechanisms based on spectroscopic signatures, energy transfer, polarization, and lifetimes to further enhance the specificity or information content of a measurement. Historically, however, spatial resolution has been limited to approximately half the wavelength due to the diffraction of light. Near-field scanning optical microscopy (NSOM) is one of several optical approaches currently being developed that combines the favorable attributes of fluorescence microscopy with superior spatial resolution. NSOM is particularly well suited for studies of both model and biological membranes and application to these systems is discussed.

摘要

直接探测生物结构在其实际存在的长度尺度上的需求推动了各种高分辨率显微镜技术的稳步发展。其中,光学显微镜,特别是基于荧光的方法,由于其有利特性,在生物学研究中继续占据主导地位。荧光显微镜既灵敏又特异,对生物样品通常是非侵入性的,对于动态研究具有出色的时间分辨率,并且相对便宜。基于光的显微镜还可以利用基于光谱特征、能量转移、偏振和寿命的多种对比机制,进一步提高测量的特异性或信息含量。然而,从历史上看,由于光的衍射,空间分辨率一直限制在大约半个波长左右。近场扫描光学显微镜(NSOM)是目前正在开发的几种光学方法之一,它将荧光显微镜的有利特性与卓越的空间分辨率结合在一起。NSOM特别适合于对模型膜和生物膜的研究,并将讨论其在这些系统中的应用。

相似文献

1
Near-field scanning optical microscopy for high-resolution membrane studies.
Methods Mol Biol. 2013;950:373-94. doi: 10.1007/978-1-62703-137-0_21.
2
Scanning near-field optical microscopy of a cell membrane in liquid.
J Microsc. 2003 Jun;210(Pt 3):288-93. doi: 10.1046/j.1365-2818.2003.01147.x.
3
Near-field scanning optical microscopy: a tool for nanometric exploration of biological membranes.
Anal Bioanal Chem. 2010 Jan;396(1):31-43. doi: 10.1007/s00216-009-3040-1.
4
Scanning near-field fluorescence resonance energy transfer microscopy.
Biophys J. 1999 Apr;76(4):1812-8. doi: 10.1016/S0006-3495(99)77341-8.
5
High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions.
Biophys J. 2005 May;88(5):3681-8. doi: 10.1529/biophysj.104.051458. Epub 2005 Feb 4.
7
Life on biomembranes viewed with the atomic force microscope.
Wien Klin Wochenschr. 1997 Jun 27;109(12-13):419-23.
8
Scanning near-field optical microscopy in cell biology and microbiology.
Cell Mol Biol (Noisy-le-grand). 1998 Jul;44(5):673-88.
9
Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.
J Cell Sci. 2014 Oct 15;127(Pt 20):4351-5. doi: 10.1242/jcs.156620. Epub 2014 Aug 21.
10
Imaging of Xenopus laevis oocyte plasma membrane in physiological-like conditions by atomic force microscopy.
Microsc Microanal. 2013 Oct;19(5):1358-63. doi: 10.1017/S1431927613001682. Epub 2013 Jun 10.

引用本文的文献

1
Uncovering the cytotoxic effects of air pollution with multi-modal imaging of respiratory models.
R Soc Open Sci. 2023 Apr 12;10(4):221426. doi: 10.1098/rsos.221426. eCollection 2023 Apr.

本文引用的文献

2
Near-field scanning optical microscopy: a tool for nanometric exploration of biological membranes.
Anal Bioanal Chem. 2010 Jan;396(1):31-43. doi: 10.1007/s00216-009-3040-1.
3
Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips.
Appl Opt. 1998 Nov 1;37(31):7289-92. doi: 10.1364/ao.37.007289.
4
Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics.
Appl Opt. 1997 Mar 1;36(7):1496-500. doi: 10.1364/ao.36.001496.
5
Near-field scanning optical microscopy to identify membrane microdomains.
Methods Mol Biol. 2007;400:469-80. doi: 10.1007/978-1-59745-519-0_31.
6
Probing single molecule dynamics.
Science. 1994 Jul 15;265(5170):361-4. doi: 10.1126/science.265.5170.361.
7
Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit.
Science. 1992 Jul 10;257(5067):189-95. doi: 10.1126/science.257.5067.189.
8
Breaking the diffraction barrier: optical microscopy on a nanometric scale.
Science. 1991 Mar 22;251(5000):1468-70. doi: 10.1126/science.251.5000.1468.
9
Single molecules observed by near-field scanning optical microscopy.
Science. 1993 Nov 26;262(5138):1422-5. doi: 10.1126/science.262.5138.1422.
10
Vault ribonucleoprotein particles and the central mass of the nuclear pore complex.
Photochem Photobiol. 2007 May-Jun;83(3):686-91. doi: 10.1111/j.1751-1097.2007.00050.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验