Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul, Korea.
J Korean Med Sci. 2012 Oct;27(10):1129-36. doi: 10.3346/jkms.2012.27.10.1129. Epub 2012 Oct 2.
Infection by microorganisms may cause fatally erroneous interpretations in the biologic researches based on cell culture. The contamination by microorganism in the cell culture is quite frequent (5% to 35%). However, current approaches to identify the presence of contamination have many limitations such as high cost of time and labor, and difficulty in interpreting the result. In this paper, we propose a model to predict cell infection, using a microarray technique which gives an overview of the whole genome profile. By analysis of 62 microarray expression profiles under various experimental conditions altering cell type, source of infection and collection time, we discovered 5 marker genes, NM_005298, NM_016408, NM_014588, S76389, and NM_001853. In addition, we discovered two of these genes, S76389, and NM_001853, are involved in a Mycolplasma-specific infection process. We also suggest models to predict the source of infection, cell type or time after infection. We implemented a web based prediction tool in microarray data, named Prediction of Microbial Infection (http://www.snubi.org/software/PMI).
微生物感染可能导致基于细胞培养的生物学研究中出现致命的错误解释。细胞培养物中的微生物污染相当频繁(5%至 35%)。然而,目前识别污染的方法存在许多局限性,例如时间和劳动力成本高,以及结果解释困难。在本文中,我们提出了一种使用微阵列技术预测细胞感染的模型,该技术提供了全基因组谱的概述。通过分析在改变细胞类型、感染源和采集时间的各种实验条件下的 62 个微阵列表达谱,我们发现了 5 个标记基因 NM_005298、NM_016408、NM_014588、S76389 和 NM_001853。此外,我们发现其中两个基因 S76389 和 NM_001853 参与了支原体特异性感染过程。我们还提出了预测感染源、细胞类型或感染后时间的模型。我们在微阵列数据中实现了一个基于网络的预测工具,名为微生物感染预测(http://www.snubi.org/software/PMI)。