School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Inorg Chem. 2012 Nov 5;51(21):11521-32. doi: 10.1021/ic301370y. Epub 2012 Oct 23.
The electrochemistry of the water oxidation catalyst, Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)] (Rb(8)K(2)-1(0)) has been studied in the presence and absence of potassium cations in both hydrochloric and sulfuric acid solutions by transient direct current (dc) cyclic voltammetry, a steady state dc method in the rotating disk configuration and the kinetically sensitive technique of Fourier transformed large-amplitude alternating current (ac) voltammetry. In acidic media, the presence of potassium ions affects the kinetics (apparent rate of electron transfer) and thermodynamics (reversible potentials) of the eight processes (A'/A to H/H') that are readily detected under dc voltammetric conditions. The six most positive processes (A'/A to F/F'), each involve a one electron ruthenium based charge transfer step (A'/A, B'/B are Ru(IV/V) oxidation and C/C' to F/F' are Ru(IV/III) reduction). The apparent rate of electron transfer of the ruthenium centers in sulfuric acid is higher than in hydrochloric acid. The addition of potassium cations increases the apparent rates and gives rise to a small shift of reversible potential. Simulations of the Fourier transformed ac voltammetry method show that the B'/B, E/E', and F/F' processes are quasi-reversible, while the others are close to reversible. A third Ru(IV/V) oxidation process is observed just prior to the positive potential limit via dc methods. Importantly, the ability of the higher harmonic components of the ac method to discriminate against the irreversible background solvent process allows this (process I) as well as an additional fourth reversible ruthenium based process (J) to be readily identified. The steady-state rotating disk electrode (RDE) method confirmed that all four Ru-centers in Rb(8)K(2)-1(0) are in oxidation state IV. The dc and ac data indicate that reversible potentials of the four ruthenium centers are evenly spaced, which may be relevant to understanding of the water oxidation electrocatalysis. A profound effect of the potassium cation is observed for the one-electron transfer process (G/G') assigned to Ru(III/II) reduction and the multiple electron transfer reduction process (H/H') that arise from the tungstate polyoxometalate framework. A significant shift of E°' to a more positive potential value for process H/H' was observed on removal of K(+) (~100 mV in H(2)SO(4) and ~50 mV in HCl).
在盐酸和硫酸溶液中,通过瞬态直流(dc)循环伏安法、旋转圆盘配置中的稳态 dc 方法以及动力学敏感的傅里叶变换大振幅交流(ac)伏安法研究了水氧化催化剂 Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)](Rb(8)K(2)-1(0)) 的电化学性质。在酸性介质中,钾离子的存在会影响在 dc 伏安条件下很容易检测到的 8 个过程(A'/A 到 H/H')的动力学(电子转移的表观速率)和热力学(可逆电位)。六个最正的过程(A'/A 到 F/F'),每个过程都涉及一个基于钌的单电子电荷转移步骤(A'/A,B'/B 是 Ru(IV/V)氧化,C/C'到 F/F'是 Ru(IV/III)还原)。在硫酸中,钌中心的电子转移表观速率高于盐酸。添加钾阳离子会增加表观速率并导致可逆电位略有偏移。傅里叶变换 ac 伏安法的模拟表明,B'/B、E/E'和 F/F'过程是准可逆的,而其他过程则接近可逆。通过直流方法在正电势极限之前观察到第三个 Ru(IV/V)氧化过程。重要的是,ac 方法的高次谐波分量能够区分不可逆的背景溶剂过程,这使得该过程(过程 I)以及另外一个第四种可逆的基于钌的过程(J)能够很容易地被识别。稳态旋转圆盘电极(RDE)方法证实,Rb(8)K(2)-1(0)中的四个钌中心都处于 IV 氧化态。直流和交流数据表明,四个钌中心的可逆电位均匀间隔,这可能与理解水氧化电催化有关。钾阳离子对分配给 Ru(III/II)还原的单电子转移过程(G/G')和源自钨酸盐多金属氧酸盐框架的多电子转移还原过程(H/H')的电子转移过程有深远的影响。在去除 K(+)(硫酸中约 100 mV,盐酸中约 50 mV)时,观察到 H/H'过程的 E°'向更正的电位值显著偏移。