Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA.
Integr Biol (Camb). 2013 Jan;5(1):183-94. doi: 10.1039/c2ib20169k.
Protein polymers are repetitive amino acid sequences that can assemble monodisperse nanoparticles with potential applications as cancer nanomedicines. Of the currently available molecular imaging methods, positron emission tomography (PET) is the most sensitive and quantitative; therefore, this work explores microPET imaging to track protein polymer nanoparticles over several days. To achieve reliable imaging, the polypeptides were modified by site-specific conjugation using a heterobifunctional sarcophagine chelator, AmBaSar, which was subsequently complexed with (64)Cu. AmBaSar/(64)Cu was selected because it can label particles in vivo over periods of days, which is consistent with the timescales required to follow long-circulating nanotherapeutics. Using an orthotopic model of breast cancer, we observed four elastin-like polypeptides (ELPs)-based protein polymers of varying molecular weight, amino acid sequence, and nanostructure. To analyze this data, we developed a six-compartment image-driven pharmacokinetic model capable of describing their distribution within individual subjects. Surprisingly, the assembly of an ELP block copolymer (78 kD) into nanoparticles (R(h) = 37.5 nm) minimally influences pharmacokinetics or tumor accumulation compared to a free ELP of similar length (74 kD). Instead, ELP molecular weight is the most important factor controlling the fate of these polymers, whereby long ELPs (74 kD) have a heart activity half-life of 8.7 hours and short ELPs (37 kD) have a half-life of 2.1 hours. These results suggest that ELP-based protein polymers may be a viable platform for the development of multifunctional therapeutic nanoparticles that can be imaged using clinical PET scanners.
蛋白质聚合物是重复的氨基酸序列,可以组装单分散纳米颗粒,具有作为癌症纳米药物的潜在应用。在目前可用的分子成像方法中,正电子发射断层扫描(PET)是最敏感和定量的;因此,这项工作探索了 microPET 成像来跟踪蛋白质聚合物纳米颗粒几天。为了实现可靠的成像,使用特异的缀合通过使用杂双功能 sarcophagine 螯合剂 AmBaSar 对多肽进行修饰,随后与(64)Cu 络合。选择 AmBaSar/(64)Cu 是因为它可以在体内标记颗粒数天,这与跟踪长循环纳米治疗所需的时间尺度一致。使用乳腺癌的原位模型,我们观察了四种基于弹性蛋白样多肽(ELP)的蛋白质聚合物,它们的分子量、氨基酸序列和纳米结构不同。为了分析这些数据,我们开发了一个六室图像驱动的药代动力学模型,能够描述它们在个体受试者中的分布。令人惊讶的是,与类似长度的自由 ELP(74 kD)相比,将 ELP 嵌段共聚物(78 kD)组装成纳米颗粒(R(h)=37.5nm)对药代动力学或肿瘤积累的影响最小。相反,ELP 分子量是控制这些聚合物命运的最重要因素,其中长 ELP(74 kD)的心脏活性半衰期为 8.7 小时,短 ELP(37 kD)的半衰期为 2.1 小时。这些结果表明,基于 ELP 的蛋白质聚合物可能是开发多功能治疗性纳米颗粒的可行平台,这些纳米颗粒可以使用临床 PET 扫描仪进行成像。