Suppr超能文献

MuMoD:一种基于贝叶斯的方法,可从全基因组 ChIP 数据中检测蛋白质-DNA 结合的多种模式。

MuMoD: a Bayesian approach to detect multiple modes of protein-DNA binding from genome-wide ChIP data.

机构信息

Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India.

出版信息

Nucleic Acids Res. 2013 Jan 7;41(1):21-32. doi: 10.1093/nar/gks950. Epub 2012 Oct 22.

Abstract

High-throughput chromatin immunoprecipitation has become the method of choice for identifying genomic regions bound by a protein. Such regions are then investigated for overrepresented sequence motifs, the assumption being that they must correspond to the binding specificity of the profiled protein. However this approach often fails: many bound regions do not contain the 'expected' motif. This is because binding DNA directly at its recognition site is not the only way the protein can cause the region to immunoprecipitate. Its binding specificity can change through association with different co-factors, it can bind DNA indirectly, through intermediaries, or even enforce its function through long-range chromosomal interactions. Conventional motif discovery methods, though largely capable of identifying overrepresented motifs from bound regions, lack the ability to characterize such diverse modes of protein-DNA binding and binding specificities. We present a novel Bayesian method that identifies distinct protein-DNA binding mechanisms without relying on any motif database. The method successfully identifies co-factors of proteins that do not bind DNA directly, such as mediator and p300. It also predicts literature-supported enhancer-promoter interactions. Even for well-studied direct-binding proteins, this method provides compelling evidence for previously uncharacterized dependencies within positions of binding sites, long-range chromosomal interactions and dimerization.

摘要

高通量染色质免疫沉淀已成为鉴定蛋白质结合基因组区域的首选方法。然后,这些区域会被进一步研究,寻找过度表达的序列模体,其假设是它们必须与所研究蛋白的结合特异性相对应。然而,这种方法经常失败:许多结合区域并不包含“预期”的模体。这是因为蛋白直接在其识别位点结合 DNA 并不是其引起该区域免疫沉淀的唯一方式。其结合特异性可以通过与不同共因子的关联而改变,它可以通过中介物间接结合 DNA,甚至通过长程染色体相互作用来执行其功能。传统的模体发现方法虽然在很大程度上能够从结合区域中识别过度表达的模体,但缺乏表征这种不同蛋白-DNA 结合方式和结合特异性的能力。我们提出了一种新颖的贝叶斯方法,该方法无需依赖任何模体数据库即可识别不同的蛋白-DNA 结合机制。该方法成功地鉴定了不直接与 DNA 结合的蛋白的共因子,如中介物和 p300。它还预测了文献支持的增强子-启动子相互作用。即使对于研究充分的直接结合蛋白,该方法也为结合位点、长程染色体相互作用和二聚化的先前未表征的依赖性提供了令人信服的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bea/3592440/02b517341759/gks950f1p.jpg

相似文献

1
MuMoD: a Bayesian approach to detect multiple modes of protein-DNA binding from genome-wide ChIP data.
Nucleic Acids Res. 2013 Jan 7;41(1):21-32. doi: 10.1093/nar/gks950. Epub 2012 Oct 22.
2
DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
PLoS Comput Biol. 2018 Apr 23;14(4):e1006090. doi: 10.1371/journal.pcbi.1006090. eCollection 2018 Apr.
3
A penalized Bayesian approach to predicting sparse protein-DNA binding landscapes.
Bioinformatics. 2014 Mar 1;30(5):636-43. doi: 10.1093/bioinformatics/btt585. Epub 2013 Oct 9.
4
PscanChIP: Finding over-represented transcription factor-binding site motifs and their correlations in sequences from ChIP-Seq experiments.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W535-43. doi: 10.1093/nar/gkt448. Epub 2013 Jun 7.
6
Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
Nucleic Acids Res. 2008 Sep;36(16):5221-31. doi: 10.1093/nar/gkn488. Epub 2008 Aug 6.
7
A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
BMC Bioinformatics. 2012 Nov 27;13:317. doi: 10.1186/1471-2105-13-317.
8
Inferring direct DNA binding from ChIP-seq.
Nucleic Acids Res. 2012 Sep 1;40(17):e128. doi: 10.1093/nar/gks433. Epub 2012 May 18.

引用本文的文献

1
Identifying promoter sequence architectures via a chunking-based algorithm using non-negative matrix factorisation.
PLoS Comput Biol. 2023 Nov 20;19(11):e1011491. doi: 10.1371/journal.pcbi.1011491. eCollection 2023 Nov.
2
A universal framework for detecting -regulatory diversity in DNA regions.
Genome Res. 2021 Sep;31(9):1646-1662. doi: 10.1101/gr.274563.120. Epub 2021 Jul 19.
3
Resolving diverse protein-DNA footprints from exonuclease-based ChIP experiments.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i367-i375. doi: 10.1093/bioinformatics/btab274.
4
Disentangling transcription factor binding site complexity.
Nucleic Acids Res. 2018 Nov 16;46(20):e121. doi: 10.1093/nar/gky683.
5
DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
PLoS Comput Biol. 2018 Apr 23;14(4):e1006090. doi: 10.1371/journal.pcbi.1006090. eCollection 2018 Apr.
6
THiCweed: fast, sensitive detection of sequence features by clustering big datasets.
Nucleic Acids Res. 2018 Mar 16;46(5):e29. doi: 10.1093/nar/gkx1251.
7
Parametric bootstrapping for biological sequence motifs.
BMC Bioinformatics. 2016 Oct 6;17(1):406. doi: 10.1186/s12859-016-1246-8.
8
Genome-wide mapping of matrix attachment regions in Drosophila melanogaster.
BMC Genomics. 2014 Nov 25;15(1):1022. doi: 10.1186/1471-2164-15-1022.
9
Multiple novel promoter-architectures revealed by decoding the hidden heterogeneity within the genome.
Nucleic Acids Res. 2014 Nov 10;42(20):12388-403. doi: 10.1093/nar/gku924. Epub 2014 Oct 17.
10
CollecTF: a database of experimentally validated transcription factor-binding sites in Bacteria.
Nucleic Acids Res. 2014 Jan;42(Database issue):D156-60. doi: 10.1093/nar/gkt1123. Epub 2013 Nov 14.

本文引用的文献

1
Genomic approaches towards finding cis-regulatory modules in animals.
Nat Rev Genet. 2012 Jun 18;13(7):469-83. doi: 10.1038/nrg3242.
2
Inferring direct DNA binding from ChIP-seq.
Nucleic Acids Res. 2012 Sep 1;40(17):e128. doi: 10.1093/nar/gks433. Epub 2012 May 18.
3
RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets.
Nucleic Acids Res. 2012 Feb;40(4):e31. doi: 10.1093/nar/gkr1104. Epub 2011 Dec 8.
5
CTCF, cohesin, and histone variants: connecting the genome.
Biochem Cell Biol. 2011 Oct;89(5):505-13. doi: 10.1139/o11-052.
6
Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types.
Immunity. 2011 Aug 26;35(2):299-311. doi: 10.1016/j.immuni.2011.08.007.
7
Interactions between subunits of the Mediator complex with gene-specific transcription factors.
Semin Cell Dev Biol. 2011 Sep;22(7):759-68. doi: 10.1016/j.semcdb.2011.07.022. Epub 2011 Aug 4.
8
Life and death of transcriptional co-activator p300.
Epigenetics. 2011 Aug;6(8):957-61. doi: 10.4161/epi.6.8.16065. Epub 2011 Aug 1.
9
Inferring transcription factor complexes from ChIP-seq data.
Nucleic Acids Res. 2011 Aug;39(15):e98. doi: 10.1093/nar/gkr341. Epub 2011 May 20.
10
GATA transcription factors regulate LHβ gene expression.
J Mol Endocrinol. 2011 Jul 18;47(1):45-58. doi: 10.1530/JME-10-0137. Print 2011 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验