Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
Sci Rep. 2012;2:764. doi: 10.1038/srep00764. Epub 2012 Oct 24.
Arbitrary spatial distributions of the electric field of light are formed through the interference of individual wavenumber mode fields with appropriate amplitudes and phases, while the maximum wavenumber in the far field is limited by the wavelength of light. In contrast, localized surface plasmons (LSPs) possess the ability to confine photons strongly into nanometer-scale areas, exceeding the diffraction limit. In particular, gap-mode LSPs produce single-nanometer-sized, highly intense localized fields, known as hot spots. Here, we show the nanoscale spatial profiles of the LSP fields within hot spots, which exhibit complicated fine structures, rather than single peaks. The nanopatterns are created by constructive and destructive interferences of dipolar, quadrupolar, and higher-order multipolar plasmonic modes, which can be drastically altered by controlling parameters of the excitation optical system. The analysis in this study would be useful for proposing new concepts for manipulation and control of light-matter interactions in nanospaces.
任意光场的空间分布是通过具有适当幅度和相位的各个波数模式场的干涉形成的,而远场中的最大波数受光波长的限制。相比之下,局域表面等离子体激元(LSP)具有将光子强烈限制在纳米级区域的能力,超过了衍射极限。特别是,间隙模式 LSP 产生单纳米级、高强度的局域场,称为热点。在这里,我们展示了热点内 LSP 场的纳米级空间分布,其表现出复杂的精细结构,而不是单峰。纳米图案是由偶极子、四极子和更高阶多极等离子体模式的相长和相消干涉产生的,通过控制激发光学系统的参数可以剧烈改变这些模式。本研究中的分析对于提出新的概念以操纵和控制纳米空间中的光物质相互作用将是有用的。