Suppr超能文献

Vascular washout reduces Ca2+ overload and improves function of reperfused ischemic hearts.

作者信息

Tani M, Neely J R

机构信息

Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822.

出版信息

Am J Physiol. 1990 Feb;258(2 Pt 2):H354-61. doi: 10.1152/ajpheart.1990.258.2.H354.

Abstract

Relationships between myocardial Ca2+ uptake, recovery of ventricular function, and restoration of tissue metabolites were determined during 30 min of reperfusion following ischemic and anoxic perfusion with either zero or low coronary flow, zero flow with intermittent perfusion, and low-flow perfusion without substrates. When zero-flow ischemia was maintained for 30 or 40 min, tissue lactate levels increased approximately 100-fold; with reperfusion of these hearts, developed pressure recovered to only 70 and 40% of preischemic function, respectively, and Ca2+ uptake increased by 7- and 15-fold. In contrast, 30 min of low-flow (1 ml/min) anoxic perfusion resulted in accumulation of less lactate (15-fold increase), less reperfusion Ca2+ uptake, and recovery of developed pressure to the preanoxic level. Omission of energy substrates during the low-flow anoxic perfusion caused a reduced recovery of heart rate with lower high-energy phosphate levels and increased Ca2+ uptake, but contractile function recovered to the same extent as in low-flow perfusion with substrate. Even very low flow rates (0.06-0.16 ml/min) of oxygen-deficient perfusate increased high-energy phosphate content and contractile function and decreased Ca2+ uptake. Intermittent perfusion with either oxygenated or anoxic buffer between four 10-min episodes of ischemia reduced lactate accumulation, maintained function, and left Ca2+ uptake essentially unchanged. Recovery of developed pressure during reperfusion was negatively correlated with the amount of lactate that accumulated during ischemia or anoxia and with reperfusion Ca2+ uptake, regardless of the duration or type of ischemia or anoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验