Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA.
Med Biol Eng Comput. 2013 Feb;51(1-2):135-42. doi: 10.1007/s11517-012-0977-6. Epub 2012 Oct 26.
Using a 94-GHz millimeter-wave interferometer, we are able to calculate the relative displacement of an object. When aimed at the chest of a human subject, we measure the minute motions of the chest due to cardiac activity. After processing the data using a wavelet multiresolution decomposition, we are able to obtain a signal with peaks at heartbeat temporal locations. In order for these heartbeat temporal locations to be accurate, the reflected signal must not be very noisy. Since there is noise in all but the most ideal conditions, we created a statistical algorithm in order to compensate for unconfident temporal locations as computed by the wavelet transform. By analyzing the statistics of the peak locations, we fill in missing heartbeat temporal locations and eliminate superfluous ones. Along with this, we adapt the processing procedure to the current signal, as opposed to using the same method for all signals. With this method, we are able to find the heart rate of ambulatory subjects without any physical contact.
使用 94GHz 毫米波干涉仪,我们能够计算物体的相对位移。当将其对准人体胸部时,我们可以测量由于心脏活动引起的胸部微小运动。使用小波多分辨率分解处理数据后,我们能够获得在心跳时间位置具有峰值的信号。为了使这些心跳时间位置准确,反射信号不能有很大的噪声。由于除了最理想的条件之外,所有条件都会有噪声,因此我们创建了一个统计算法,以便补偿小波变换计算出的不确定的时间位置。通过分析峰位置的统计信息,我们填补缺失的心跳时间位置并消除多余的位置。与此同时,我们根据当前信号调整处理过程,而不是对所有信号都使用相同的方法。通过这种方法,我们能够在无需任何身体接触的情况下找到活动主体的心率。