Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18390-4. doi: 10.1073/pnas.1213295109. Epub 2012 Oct 24.
The causative agent of leishmaniasis is the protozoan parasite Leishmania major. Part of the host protective mechanism is the production of reactive oxygen species including hydrogen peroxide. In response, L. major produces a peroxidase, L. major peroxidase (LmP), that helps to protect the parasite from oxidative stress. LmP is a heme peroxidase that catalyzes the peroxidation of mitochondrial cytochrome c. We have determined the crystal structure of LmP in a complex with its substrate, L. major cytochrome c (LmCytc) to 1.84 Å, and compared the structure to its close homolog, the yeast cytochrome c peroxidase-cytochrome c complex. The binding interface between LmP and LmCytc has one strong and one weak ionic interaction that the yeast system lacks. The differences between the steady-state kinetics correlate well with the Lm redox pair being more dependent on ionic interactions, whereas the yeast redox pair depends more on nonpolar interactions. Mutagenesis studies confirm that the ion pairs at the intermolecular interface are important to both k(cat) and K(M). Despite these differences, the electron transfer path, with respect to the distance between hemes, along the polypeptide chain is exactly the same in both redox systems. A potentially important difference, however, is the side chains involved. LmP has more polar groups (Asp and His) along the pathway compared with the nonpolar groups (Leu and Ala) in the yeast system, and as a result, the electrostatic environment along the presumed electron transfer path is substantially different.
利什曼原虫病的病原体是原生动物寄生虫利什曼原虫。宿主保护机制的一部分是产生包括过氧化氢在内的活性氧。作为回应,利什曼原虫产生了一种过氧化物酶,即利什曼原虫过氧化物酶(LmP),它有助于保护寄生虫免受氧化应激。LmP 是一种血红素过氧化物酶,可催化线粒体细胞色素 c 的过氧化反应。我们已经确定了 LmP 与其底物利什曼原虫细胞色素 c(LmCytc)复合物的晶体结构,分辨率为 1.84Å,并将其结构与近缘的酵母细胞色素 c 过氧化物酶-细胞色素 c 复合物进行了比较。LmP 与 LmCytc 之间的结合界面有一个强离子相互作用和一个弱离子相互作用,而酵母系统缺乏后者。稳态动力学的差异与 Lm 氧化还原对更依赖离子相互作用很好地相关,而酵母氧化还原对则更依赖非极性相互作用。突变研究证实,分子间界面的离子对对于 k(cat) 和 K(M) 都很重要。尽管存在这些差异,但两个氧化还原系统中沿多肽链的电子转移路径在血红素之间的距离方面完全相同。然而,一个潜在的重要区别是涉及的侧链。与酵母系统中的非极性基团(亮氨酸和丙氨酸)相比,LmP 沿途径具有更多的极性基团(天冬氨酸和组氨酸),因此,假定电子转移路径上的静电环境有很大不同。