Suppr超能文献

一种钌-细胞色素c衍生物的设计,用于测量细胞色素c过氧化物酶中向自由基阳离子和氧合铁血红素的电子转移。

Design of a ruthenium-cytochrome c derivative to measure electron transfer to the radical cation and oxyferryl heme in cytochrome c peroxidase.

作者信息

Wang K, Mei H, Geren L, Miller M A, Saunders A, Wang X, Waldner J L, Pielak G J, Durham B, Millett F

机构信息

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, USA.

出版信息

Biochemistry. 1996 Nov 26;35(47):15107-19. doi: 10.1021/bi9611117.

Abstract

A new ruthenium-labeled cytochrome c derivative was designed to measure the actual rate of electron transfer to the Trp-191 radical cation and the oxyferryl heme in cytochrome c peroxidase compound I {CMPI(FeIV = O,R.+)}. The H39C,C102T variant of yeast iso-1-cytochrome c was labeled at the single cysteine residue with a tris (bipyridyl)ruthenium(II) reagent to form Ru-39-Cc. This derivative has the same reactivity with CMPI as native yCc measured by stopped-flow spectroscopy, indicating that the ruthenium group does not interfere with the interaction between the two proteins. Laser excitation of the 1:1 Ru-39-Cc-CMPI complex in low ionic strength buffer (2 mM phosphate, pH 7) resulted in electron transfer from RuII* to heme c FeIII with a rate constant of 5 x 10(5) s-1, followed by electron transfer from heme c Fe II to the Trp-191 indolyl radical cation in CMPI(FeIV = O,R*+) with a rate constant of k(eta) = 2 x 10(6) s-1. A subsequent laser flash led to electron transfer from heme c to the oxyferryl heme in CMPII-(FeIV = O,R) with a rate constant of k(etb) = 5000 s-1. The location of the binding domain was determined using a series of surface charge mutants of CcP. The mutations D34N, E290N, and A193F each decreased the values of k(eta) and k(etb) by 2-4-fold, consistent with the use of the binding domain identified in the crystal structure of the yCc-CcP complex for reduction of both redox centers [Pelletier, H., & Kraut, J. (1992) Science 258, 1748-1755]. A mechanism is proposed for reduction of the oxyferryl heme in which internal electron transfer in CMPII(FeIV = O,R) leads to the regeneration of the radical cation in CMPII-(FeIII,R*+), which is then reduced by yCcII. Thus, both steps in the complete reduction of CMPI involve electron transfer from yCcII to the Trp-191 radical cation using the same binding site and pathway. Comparison of the rate constant k(eta) with theoretical predictions indicate that the electron transfer pathway identified in the crystalline yCc-CcP complex is very efficient. Stopped-flow studies indicate that native yCcII initially reduces the Trp-191 radical cation in CMPI with a second-order rate constant ka, which increases from 1.8 x 10(8) M-1 s-1 at 310 mM ionic strength to > 3 x 10(9) M-1 s-1 at ionic strengths below 100 mM. A second molecule of yCcII then reduces the oxyferryl heme in CMPII with a second-order rate constant kb which increases from 2.7 x 10(7) M-1 s-1 at 310 mM ionic strength to 2.5 x 10(8) M-1 s-1 at 160 mM ionic strength. As the ionic strength is decreased below 100 mM the rate constant for reduction of the oxyferryl heme becomes progressively slower as the reaction is limited by release of the product yCcIII from the yCcIII-CMPII complex. Both ruthenium photoreduction studies and stopped-flow studies demonstrate that the Trp-191 radical cation is the initial site of reduction in CMPI under all conditions of ionic strength.

摘要

设计了一种新的钌标记细胞色素c衍生物,用于测量细胞色素c过氧化物酶化合物I {CMPI(FeIV = O,R.+) }中电子转移到Trp - 191自由基阳离子和氧合铁血红素的实际速率。酵母同工酶-1-细胞色素c的H39C、C102T变体在单个半胱氨酸残基处用三(联吡啶)钌(II)试剂标记,形成Ru - 39 - Cc。通过停流光谱法测定,该衍生物与CMPI的反应活性与天然酵母细胞色素c相同,表明钌基团不干扰两种蛋白质之间的相互作用。在低离子强度缓冲液(2 mM磷酸盐,pH 7)中对1:1的Ru - 39 - Cc - CMPI复合物进行激光激发,导致电子从RuII转移到血红素c FeIII,速率常数为5×10(5) s-1,随后电子从血红素c Fe II转移到CMPI(FeIV = O,R+)中的Trp - 191吲哚基自由基阳离子,速率常数为k(eta) = 2×10(6) s-1。随后的激光闪光导致电子从血红素c转移到CMPII-(FeIV = O,R)中的氧合铁血红素,速率常数为k(etb) = 5000 s-1。使用一系列细胞色素c过氧化物酶的表面电荷突变体确定了结合结构域的位置。D34N、E290N和A193F突变分别使k(eta)和k(etb)的值降低了2 - 4倍,这与在酵母细胞色素c -细胞色素c过氧化物酶复合物晶体结构中鉴定的用于还原两个氧化还原中心的结合结构域的使用一致[佩尔蒂埃,H.,&克劳特,J. (1992)《科学》258, 1748 - 1755]。提出了一种还原氧合铁血红素的机制,其中CMPII(FeIV = O,R)中的内部电子转移导致CMPII-(FeIII,R*+)中自由基阳离子的再生,然后被酵母细胞色素c II还原。因此,CMPI完全还原的两个步骤都涉及使用相同的结合位点和途径从酵母细胞色素c II向Trp - 191自由基阳离子的电子转移。将速率常数k(eta)与理论预测值进行比较表明,在结晶的酵母细胞色素c -细胞色素c过氧化物酶复合物中鉴定的电子转移途径非常有效。停流研究表明,天然酵母细胞色素c II最初以二级速率常数ka还原CMPI中的Trp - 191自由基阳离子 ka在310 mM离子强度下为1.8×10(8) M-1 s-1,在离子强度低于100 mM时增加到> 3×10(9) M-1 s-1。然后第二个酵母细胞色素c II分子以二级速率常数kb还原CMPII中的氧合铁血红素,kb在310 mM离子强度下为2.7×10(7) M-1 s-1,在160 mM离子强度下为2.5×10(8) M-1 s-1。当离子强度降低到100 mM以下时,由于产物酵母细胞色素c III从酵母细胞色素c III - CMPII复合物中释放受限,还原氧合铁血红素的速率常数逐渐变慢。钌光还原研究和停流研究均表明,在所有离子强度条件下,Trp - 191自由基阳离子都是CMPI中还原的初始位点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验