Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB Canada R3T 5V6.
Indian J Microbiol. 2008 Jun;48(2):252-66. doi: 10.1007/s12088-008-0036-z. Epub 2008 Jul 27.
Clostridium thermocellum is a gram-positive, acetogenic, thermophilic, anaerobic bacterium that degrades cellulose and carries out mixed product fermentation, catabolising cellulose to acetate, lactate, and ethanol under various growth conditions, with the concomitant release of H(2) and CO(2). Very little is known about the factors that determine metabolic fluxes influencing H(2) synthesis in anaerobic, cellulolytic bacteria like C. thermocellum. We have begun to investigate the relationships between genome content, gene expression, and end-product synthesis in C. thermocellum cultured under different conditions. Using bioinformatics tools and the complete C. thermocellum 27405 genome sequence, we identified genes encoding key enzymes in pyruvate catabolism and H(2)-synthesis pathways, and have confirmed transcription of these genes throughout growth on α-cellulose by reverse transcriptase polymerase chain reaction. Bioinformatic analyses revealed two putative lactate dehydrogenases, one pyruvate formate lyase, four pyruvate:formate lyase activating enzymes, and at least three putative pyruvate:ferredoxin oxidoreductase (POR) or POR-like enzymes. Our data suggests that hydrogen may be generated through the action of either a Ferredoxin (Fd)-dependent NiFe hydrogenase, often referred to as "Energy-converting Hydrogenases", or via NAD(P)Hdependent Fe-only hydrogenases which would permit H(2) production from NADH generated during the glyceraldehyde-3-phosphate dehydrogenase reaction. Furthermore, our findings show the presence of a gene cluster putatively encoding a membrane integral NADH:Fd oxidoreductase, suggesting a possible mechanism in which electrons could be transferred between NADH and ferredoxin. The elucidation of pyruvate catabolism pathways and mechanisms of H(2) synthesis is the first step in developing strategies to increase hydrogen yields from biomass. Our studies have outlined the likely pathways leading to hydrogen synthesis in C. thermocellum strain 27405, but the actual functional roles of these gene products during pyruvate catabolism and in H 2 synthesis remain to be elucidated, and will need to be confirmed using both expression analysis and protein characterization.
热纤梭菌是一种革兰氏阳性、产乙酸、嗜热、厌氧细菌,可降解纤维素,并在各种生长条件下进行混合产物发酵,将纤维素代谢为乙酸盐、乳酸盐和乙醇,同时释放 H(2)和 CO(2)。关于决定代谢通量的因素知之甚少,这些因素会影响厌氧纤维素分解菌,如热纤梭菌中 H(2)的合成。我们已经开始研究不同条件下培养的热纤梭菌的基因组内容、基因表达和终产物合成之间的关系。使用生物信息学工具和完整的热纤梭菌 27405 基因组序列,我们鉴定了编码丙酮酸代谢和 H(2)合成途径关键酶的基因,并通过逆转录聚合酶链反应证实了这些基因在 α-纤维素上生长过程中的转录。生物信息学分析揭示了两种推测的乳酸脱氢酶、一种丙酮酸甲酸裂解酶、四种丙酮酸:甲酸裂解酶激活酶和至少三种推测的丙酮酸:铁氧还蛋白氧化还原酶(POR)或 POR 样酶。我们的数据表明,氢气可能是通过作用于依赖铁氧还蛋白(Fd)的 NiFe 氢化酶产生的,通常称为“能量转换氢化酶”,或通过 NAD(P)H 依赖性铁单氢化酶产生,这将允许从甘油醛-3-磷酸脱氢酶反应中产生的 NADH 产生 H(2)。此外,我们的发现表明存在一个基因簇,推测该基因簇编码一种膜整合 NADH:Fd 氧化还原酶,这表明电子可能在 NADH 和铁氧还蛋白之间传递的一种可能机制。阐明丙酮酸代谢途径和 H(2)合成机制是从生物质中提高氢气产量的第一步。我们的研究概述了热纤梭菌 27405 菌株中导致 H(2)合成的可能途径,但这些基因产物在丙酮酸代谢和 H(2)合成中的实际功能作用仍有待阐明,并且需要通过表达分析和蛋白质特性来证实。