LCSB - Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Prog Biophys Mol Biol. 2013 Apr;111(2-3):69-74. doi: 10.1016/j.pbiomolbio.2012.10.003. Epub 2012 Oct 24.
This paper discusses the interrelations between physics and biology. Particularly, we analyse the approaches for reconstructing the emergent properties of physical or biological systems. We propose approaches to scale emergence according to the degree of state-dependency of the system's component properties. Since the component properties of biological systems are state-dependent to a high extent, biological emergence should be considered as very strong emergence - i.e. its reconstruction would require a lot of information about state-dependency of its component properties. However, due to its complexity and volume, this information cannot be handled in the naked human brain, or on the back of an envelope. To solve this problem, biological emergence can be reconstructed in silico based on experimentally determined rate laws and parameter values of the living cell. According to some rough calculations, the silicon human might comprise the mathematical descriptions of around 10(5) interactions. This is not a small number, but taking into account the exponentially increase of computational power, it should not prove to be our principal limitation. The bigger challenges will be located in different areas. For example they may be related to the observer effect - the limitation to measuring a system's component properties without affecting the system. Another obstacle may be hidden in the tradition of "shaving away" all "unnecessary" assumptions (the so-called Occam's razor) that, in fact, reflects the intention to model the system as simply as possible and thus to deem the emergence to be less strong than it possibly is. We argue here that that Occam's razor should be replaced with the law of completeness.
本文讨论了物理学与生物学之间的相互关系。特别是,我们分析了重建物理或生物系统涌现性质的方法。我们提出了根据系统组成性质的状态依存度来对涌现进行缩放的方法。由于生物系统的组成性质在很大程度上是状态依存的,因此生物涌现应该被视为非常强的涌现——即重建它需要大量关于其组成性质的状态依存性的信息。然而,由于其复杂性和规模,这些信息无法在人类大脑中或在信封背面处理。为了解决这个问题,可以根据活细胞的实验确定的速率定律和参数值,在计算机上对生物涌现进行重建。根据一些粗略的计算,硅人可能包括大约 10^5 个相互作用的数学描述。这不是一个小数目,但考虑到计算能力的指数增长,它不应成为我们的主要限制。更大的挑战将位于其他领域。例如,它们可能与观察者效应有关——即限制在不影响系统的情况下测量系统组成性质的能力。另一个障碍可能隐藏在“剃除”所有“不必要”假设(所谓的奥卡姆剃刀)的传统中,实际上,这反映了将系统建模为尽可能简单的意图,从而认为涌现的强度比实际情况要小。我们在这里认为,奥卡姆剃刀应该被完整性定律所取代。