Suppr超能文献

大鼠基底外侧杏仁核锥体细胞的去甲肾上腺素能神经支配。

Noradrenergic innervation of pyramidal cells in the rat basolateral amygdala.

机构信息

Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.

出版信息

Neuroscience. 2013 Jan 3;228:395-408. doi: 10.1016/j.neuroscience.2012.10.035. Epub 2012 Oct 26.

Abstract

The basolateral nuclear complex of the amygdala (BLC) receives dense noradrenergic/norepinephrine (NE) inputs from the locus coeruleus that play a key role in modulating emotional memory consolidation. Knowledge of the extent of synapse formation by NE inputs to the BLC, as well as the cell types innervated, would contribute to an understanding of how NE modulates the activity of the BLC. To gain a better understanding of NE circuits in the BLC, dual-label immunohistochemistry was used at the light and electron microscopic levels in the present study to analyze NE axons and their innervation of pyramidal cells in the anterior subdivision of the basolateral amygdalar nucleus (BLa). NE axons and BLa pyramidal cells were labeled using antibodies to the norepinephrine transporter (NET) and Ca(2+)/calmodulin-dependent protein kinase (CaMK), respectively. Dual localization studies using antibodies to NET and dopamine-beta-hydroxylase (DBH) revealed that virtually all NE axons and varicosities expressed both proteins. The BLa exhibited a medium density of NET+ fibers. Ultrastructural analysis of serial section reconstructions of NET+ axons revealed that only about half of NET+ terminals formed synapses. The main postsynaptic targets were small-caliber CAMK+ dendritic shafts and spines of pyramidal cells. A smaller number of NET+ terminals formed synapses with unlabeled cell bodies and dendrites. These findings indicate that the distal dendritic domain of BLa pyramidal cells is the major target of NE terminals in the BLa, and the relatively low synaptic incidence suggests that diffusion from non-synaptic terminals may be important for noradrenergic modulation of the BLa.

摘要

杏仁体基底外侧核复合体(BLC)接收来自蓝斑核的密集去甲肾上腺素/去甲肾上腺素(NE)输入,这些输入在调节情绪记忆巩固方面起着关键作用。了解 NE 输入到 BLC 的突触形成程度以及受神经支配的细胞类型,将有助于理解 NE 如何调节 BLC 的活性。为了更好地了解 BLC 中的 NE 回路,本研究在光镜和电镜水平上使用双重免疫组织化学方法分析了 NE 轴突及其在前外侧杏仁核亚区(BLa)的锥体神经元的神经支配。使用针对去甲肾上腺素转运蛋白(NET)和 Ca(2+)/钙调蛋白依赖性蛋白激酶(CaMK)的抗体分别标记 NE 轴突和 BLa 锥体细胞。使用针对 NET 和多巴胺-β-羟化酶(DBH)的抗体进行双重定位研究表明,几乎所有的 NE 轴突和末梢都表达这两种蛋白。BLa 表现出中等密度的 NET+纤维。对 NET+轴突的连续切片重建的超微结构分析表明,只有大约一半的 NET+终末形成突触。主要的突触后靶标是小直径的 CaMK+树突干和锥体细胞的棘突。较少数量的 NET+终末与未标记的细胞体和树突形成突触。这些发现表明,BLa 锥体细胞的远端树突域是 BLa 中 NE 末梢的主要靶标,而相对较低的突触发生率表明,来自非突触末梢的扩散可能对 BLa 的去甲肾上腺素调节很重要。

相似文献

1
Noradrenergic innervation of pyramidal cells in the rat basolateral amygdala.
Neuroscience. 2013 Jan 3;228:395-408. doi: 10.1016/j.neuroscience.2012.10.035. Epub 2012 Oct 26.
2
Dopaminergic innervation of pyramidal cells in the rat basolateral amygdala.
Brain Struct Funct. 2009 Feb;213(3):275-88. doi: 10.1007/s00429-008-0196-y. Epub 2008 Oct 7.
5
Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala.
J Comp Neurol. 2007 Jan 20;500(3):513-29. doi: 10.1002/cne.21185.
9
Limited convergence of rhinal cortical and dopaminergic inputs in the rat basolateral amygdala: an ultrastructural analysis.
Brain Res. 2010 May 21;1332:48-56. doi: 10.1016/j.brainres.2010.03.062. Epub 2010 Mar 24.
10
Direct targeting of peptidergic amygdalar neurons by noradrenergic afferents: linking stress-integrative circuitry.
Brain Struct Funct. 2015 Jan;220(1):541-58. doi: 10.1007/s00429-013-0674-8. Epub 2013 Nov 23.

引用本文的文献

1
Identification of a stress-responsive subregion of the basolateral amygdala in male rats.
Neuropsychopharmacology. 2024 Dec;49(13):1989-1999. doi: 10.1038/s41386-024-01927-x. Epub 2024 Aug 9.
2
Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety.
Front Cell Neurosci. 2024 Jun 27;18:1421617. doi: 10.3389/fncel.2024.1421617. eCollection 2024.
4
From pupil to the brain: New insights for studying cortical plasticity through pupillometry.
Front Neural Circuits. 2023 Mar 31;17:1151847. doi: 10.3389/fncir.2023.1151847. eCollection 2023.
5
Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit.
Front Syst Neurosci. 2022 Apr 19;16:888461. doi: 10.3389/fnsys.2022.888461. eCollection 2022.
6
The amygdalar opioid system.
Handb Behav Neurosci. 2020;26:161-212. doi: 10.1016/B978-0-12-815134-1.00008-8. Epub 2020 Mar 31.
7
Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits.
Handb Behav Neurosci. 2020;26:1-38. doi: 10.1016/b978-0-12-815134-1.00001-5. Epub 2020 Mar 31.
8
The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives.
Front Psychiatry. 2021 Jan 27;11:601519. doi: 10.3389/fpsyt.2020.601519. eCollection 2020.
9
Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons.
J Neurosci. 2020 Oct 21;40(43):8367-8385. doi: 10.1523/JNEUROSCI.1720-20.2020. Epub 2020 Sep 29.

本文引用的文献

3
Ultrastructural characterization of noradrenergic axons and Beta-adrenergic receptors in the lateral nucleus of the amygdala.
Front Behav Neurosci. 2010 Oct 13;4:162. doi: 10.3389/fnbeh.2010.00162. eCollection 2010.
4
Understanding wiring and volume transmission.
Brain Res Rev. 2010 Sep;64(1):137-59. doi: 10.1016/j.brainresrev.2010.03.003. Epub 2010 Mar 27.
5
Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment.
Br J Pharmacol. 2010 Jun;160(4):785-809. doi: 10.1111/j.1476-5381.2009.00624.x. Epub 2010 Feb 5.
6
Anxiogenic modulation of spontaneous and evoked neuronal activity in the basolateral amygdala.
Neuroscience. 2009 Nov 10;163(4):1069-77. doi: 10.1016/j.neuroscience.2009.07.003. Epub 2009 Jul 7.
7
Stress, memory and the amygdala.
Nat Rev Neurosci. 2009 Jun;10(6):423-33. doi: 10.1038/nrn2651.
8
Noradrenergic enhancement of amygdala responses to fear.
Soc Cogn Affect Neurosci. 2009 Jun;4(2):119-26. doi: 10.1093/scan/nsn049. Epub 2009 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验