Suppr超能文献

在个体发育过程中,系统发育、代谢和分类多样性塑造了地中海实蝇的微生物组。

Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny.

机构信息

Departments of Microbiology.

出版信息

Appl Environ Microbiol. 2013 Jan;79(1):303-13. doi: 10.1128/AEM.02761-12. Epub 2012 Oct 26.

Abstract

The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community's dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly's life cycle. While keeping "core" diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly's microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers.

摘要

地中海实蝇(medfly)(Ceratitis capitata)在果实中产卵,幼虫随后在果实中发育,导致大规模的农业损害。在其消化道内,蝇支持一个扩展的细菌群落,由多种肠杆菌物种的多种菌株组成。这些细菌中的大多数似乎具有功能冗余性,大多数菌株维持固氮作用和/或果胶分解作用。至少有一些这些细菌被证明是垂直遗传的,但对该群落动态的定植、结构和代谢方面尚未进行研究。我们使用荧光原位杂交、代谢谱分析、平板培养和焦磷酸测序表明,最初由卵携带的多样化群落会在蝇的整个生命周期中扩展。在保持“核心”固氮和果胶分解功能的同时,它还拥有多样化和波动的种群,表达不同的代谢能力。我们认为,蝇的微生物组的代谢和组成可塑性为 medfly 宿主提供了潜在的适应性优势,其获取和动态受到包括随机效应、宿主行为和分子障碍在内的混合过程的影响。

相似文献

1
Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny.
Appl Environ Microbiol. 2013 Jan;79(1):303-13. doi: 10.1128/AEM.02761-12. Epub 2012 Oct 26.
2
Bringing back the fruit into fruit fly-bacteria interactions.
Mol Ecol. 2008 Mar;17(5):1375-86. doi: 10.1111/j.1365-294X.2008.03674.x.
4
Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata.
Mol Ecol. 2005 Aug;14(9):2637-43. doi: 10.1111/j.1365-294X.2005.02615.x.
5
Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity.
J Insect Physiol. 2008 Sep;54(9):1377-83. doi: 10.1016/j.jinsphys.2008.07.011. Epub 2008 Jul 26.
7
Selection of a Bacillus pumilus strain highly active against Ceratitis capitata (Wiedemann) larvae.
Appl Environ Microbiol. 2010 Mar;76(5):1320-7. doi: 10.1128/AEM.01624-09. Epub 2009 Dec 28.
8
The host fruit amplifies mutualistic interaction between Ceratitis capitata larvae and associated bacteria.
BMC Biotechnol. 2019 Dec 18;19(Suppl 2):92. doi: 10.1186/s12896-019-0581-z.
10
Mediterranean fruit fly as a potential vector of bacterial pathogens.
Appl Environ Microbiol. 2005 Jul;71(7):4052-6. doi: 10.1128/AEM.71.7.4052-4056.2005.

引用本文的文献

5
Bacterial Communities Are Less Diverse in a Strepsipteran Endoparasitoid than in Its Fruit Fly Hosts and Dominated by Wolbachia.
Microb Ecol. 2023 Oct;86(3):2120-2132. doi: 10.1007/s00248-023-02218-6. Epub 2023 Apr 27.
6
Fruit fly phylogeny imprints bacterial gut microbiota.
Evol Appl. 2022 May 3;15(10):1621-1638. doi: 10.1111/eva.13352. eCollection 2022 Oct.
7
Dynamics of the Gut Bacteriome During a Laboratory Adaptation Process of the Mediterranean Fruit Fly, .
Front Microbiol. 2022 Jul 1;13:919760. doi: 10.3389/fmicb.2022.919760. eCollection 2022.
8
Bacterial Symbionts in .
Insects. 2022 May 19;13(5):474. doi: 10.3390/insects13050474.
9
Characterisation of the symbionts in the Mediterranean fruit fly gut.
Microb Genom. 2022 Apr;8(4). doi: 10.1099/mgen.0.000801.

本文引用的文献

1
Is a robust phylogeny of the enterobacterial plant pathogens attainable?
Cladistics. 2011 Feb;27(1):80-93. doi: 10.1111/j.1096-0031.2010.00313.x.
2
The application of ecological theory toward an understanding of the human microbiome.
Science. 2012 Jun 8;336(6086):1255-62. doi: 10.1126/science.1224203. Epub 2012 Jun 6.
3
Symbiont-mediated insecticide resistance.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22. doi: 10.1073/pnas.1200231109. Epub 2012 Apr 23.
4
Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74. doi: 10.1073/pnas.1113246109. Epub 2012 Jan 9.
5
Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15966-71. doi: 10.1073/pnas.1105994108. Epub 2011 Sep 6.
6
UCHIME improves sensitivity and speed of chimera detection.
Bioinformatics. 2011 Aug 15;27(16):2194-200. doi: 10.1093/bioinformatics/btr381. Epub 2011 Jun 23.
9
Bacterial symbionts in insects or the story of communities affecting communities.
Philos Trans R Soc Lond B Biol Sci. 2011 May 12;366(1569):1389-400. doi: 10.1098/rstb.2010.0226.
10
Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.
PLoS Genet. 2011 Jan 27;7(1):e1001284. doi: 10.1371/journal.pgen.1001284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验